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Abstract

Polarized protons were accelerated in AGS and RHIC up to 100 GeV during

the 2002 polarized proton run. We examined some of the major sources of

depolarization in both the AGS and RHIC. In the AGS uncorrected depolar-

ization due to weak intrinsic resonances and coupled spin resonances result in

a net loss on the order of 40%. We studied in detail the responses of these

resonances to tune, skew quadrupole strength and partial snake strength and

compared them against predictions given by an enhanced version of DEPOL

[1].

Three solutions to the remaining weak and coupled spin resonances in the

AGS were examined. An 11.4% partial solenoidal snake successfully flipped

the spin during an intrinsic resonance crossing, the first time a strong partial

snake has been tested in this way. Next we re-examine the proposal to add

a family of 12 quadrupoles to the 15th lattice location in the AGS [2] to

suppress the weak intrinsic resonances and proposed the addition of a second

family of six skew quadrupoles in the 15th location to suppress the coupled

spin resonances.

In RHIC higher order snake resonances were observed and measured for

the first time. Their location and behavior appeared consistent with current

snake resonance theory. Finally using the measured multipole fields along a

fixed surface and current, a full field map was developed for RHIC’s Siberian

snakes. These field maps were used to help control and calibrate the orbit and

spin tune in RHIC.
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Chapter 1

Introduction

Spin is one of the more fascinating intrinsic properties of elementary particles.

After being introduced by Uhlenbeck and Goudsmit in 1925 to explain the hy-

perfine splitting of the atomic spectra of hydrogen, its physical interpretation

was not clearly understood until Dirac showed it as a natural consequence

of relativity and quantum mechanics. As the boundaries of the Standard

Model have been pushed, spin dependent interactions are now under increas-

ing scrutiny. Since many of the properties of nucleons have been explained

by properties of the constituent quarks, it was believed that the proton’s spin

could be explained by quark spin. However experiments at CERN and SLAC

demonstrated that quarks carry only a portion of the total proton spin.

The question of the remaining spin is one of the problems the Relativistic

Heavy Ion Collider (RHIC) spin program at Brookhaven National Labs seeks

to understand. The approach is to examine the total and differential cross sec-

tions as result of elastic proton - proton scattering considering its dependency
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on polarization at energies from 60 - 500 GeV. TheW and Z bosons produced

during the collisions are expected to violate parity maximally. From this par-

ity violation the quark polarization in polarized protons can be measured by

individual flavor. Thus using perturbative QCD the u and d̄ polarization can

be determined from W+ production and the d and ū polarizations from W−

production. In addition direct photon production from the collisions will allow

the measurement of gluon polarization in the polarized proton.

These collisions also open the door for other searches for parity violations

which go beyond the Standard Model. For example, a parity violation may

occur in the interaction of quarks with substructure, or a new right-handed Z

boson.

Thus a major concern in this effort is the delivery of polarized protons at

these high energies. Since fields necessary to focus and accelerate the protons

can also contribute to depolarization, a good understanding of the impact

of various machine parameters is necessary if significant polarization is to be

maintained.

In the absence of horizontal or longitudinal depolarizing fields all the spin

vectors will precess around the vertical direction at a rate of Gγ per revolution

in a circular accelerator. Here G = g
2
− 1 is the anomalous magnetic moment

coefficient and γ is the Lorentz factor. This rate of precession is known as

the spin tune νs. The horizontal and longitudinal fields arising from dipoles,

quadrupoles and solenoids can act in a coherent fashion to depolarize the beam.

This can occur when the field perturbation tune equals the spin tune. These

resonances phenomena can be broken down into three categories, imperfection

resonances, intrinsic resonances and coupled spin resonances.
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Imperfection resonances arise from the closed orbit in a realistic accelerator

acquiring spin kicks from off-centered quadrupole fields. Thus, when the spin

tune νs in an integer, the imperfection resonance condition is encountered.

Intrinsic resonances are due to vertical betatron oscillations in the machine.

In an accelerator with focusing and defocusing quadrupoles, particles with

nonzero betatron oscillation amplitudes will traverse quadrupole fields off cen-

ter and acquire spin kicks. When the spin tune νs equals a harmonic of the

vertical betatron tune, an intrinsic resonance condition is encountered.

When a lattice contains skew quadrupoles, solenoids or rolls in the magnets

the vertical and horizontal betatron motion can be coupled. In this case the

frequency of the horizontal betatron motion is projected into the vertical plane.

Thus the vertical motion acquires a second frequency component and a new

resonance condition: coupled spin resonances. These resonances will occur

when the spin tune νs equals a sideband of the horizontal betatron tune.

Thus, when accelerating polarized protons, a host of resonance conditions

are encountered as Gγ increases. In the past, several techniques were devised

to overcome these resonances. Initially imperfection resonances were overcome

by using harmonic dipole correctors to correct the vertical closed orbit and a

fast tune jump was used to avoid the intrinsic resonances. However both

methods had significant short comings. The technique of harmonic correction

proved very difficult since it was very sensitive to physical conditions inside the

ring such as temperature and ground motion. Thus the process of correction

was very tedious and time consuming. The fast tune jump method, since it

is a non-adiabatic process can cause the undesirable emittance dilution of the

beam.
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Clearly as the energy level rises above 25 GeV to 100 and 250 GeV in

RHIC, these methods simply become impractical. Luckily a clever solution

to the problem of avoiding spin resonances was invented by Derbenev and

Kondratenko [3]. They proposed placing in the lattice a powerful magnet to

rotate the spin direction by 180◦ every time the beam circulated around the

ring. Thus the precession rate of the proton’s spin or spin tune νs is artificially

made to be equal to 1/2. In this way all the resonance conditions are avoided

and the spin tune is made energy independent. The type of magnet necessary

to accomplish the full rotation of the spin vector is called a Siberian snake. The

practical use of Siberian snakes was first demonstrated in 1989 at the Indiana

University Cyclotron Facility (IUCF). [4] Later four super-conducting helical

snakes were installed in RHIC (two per ring), and in 2001 and 2002 polarized

protons were successfully accelerated to 100 GeV achieving 25% polarization

[5] [6]. Despite the successful operation of the snakes in RHIC, several snake

resonances were encountered during a number of the acceleration ramps. Snake

resonances are new class of resonances which were first suggested to exist in

accelerators with snakes by Lee and Tepekian in 1983 [7]. The theory of odd

and even snake resonances was completed in 1992 by Lee [8]. Still with careful

orbit correction and tune control these snake resonances can be avoided.

However in the AGS a full snake simply could not fit into the current lattice,

so several other novel methods were pioneered in the AGS to overcome these

resonances. In 1994 a partial snake was installed and tested in the AGS [13].

The partial snake was designed to rotate the spin vector by several degrees

each turn. The result is the creation of a strong imperfection resonance at

every Gγ = integer. Since the resonance induced is strong enough to flip
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the spin vector completely over, spin polarization can be preserved across the

imperfection resonances. However since the partial snake was built using a

solenoid, strong coupling was introduced into the AGS enhancing the coupled

spin resonances.

In 1999 an ac dipole was installed and tested in the AGS [14]. The ac dipole

was used to overcome strong intrinsic resonances by driving the ac dipole near

the vertical betatron tune, thus enhancing the natural intrinsic resonance. So

instead of depolarizing the beam a full spin flip is achieved. However, the

ac dipole could not be used on the weak intrinsic resonances since the beam

amplitude of the oscillation required to achieve a full spin flip in this case was

beyond the physical aperture of the AGS beam pipe.

To date problems in the AGS remain with the weak intrinsic resonances and

the coupled spin resonances. Problems with these resonances have hampered

efforts to deliver the targeted 70% polarization levels in RHIC. The AGS has

only been able to deliver a maximum of 40% polarization to RHIC, and during

the latest 2002 polarized proton run only 25% was delivered due to the use of a

backup main magnet power supply which provided a slower acceleration rate.

The polarized proton source during the 2002 run reliably delivered protons

polarized at 70% to the AGS. Thus losses in the AGS amount to nearly 40%

of the delivered polarization, all of which are due to the coupled and weak in-

trinsic resonances. A better understanding of the behavior of these resonances

is urgently needed so that an effective remedy can be implemented. While the

snakes in RHIC seemed capable of preserving the delivered polarization up to

100 GeV, still snake resonances made the process erratic and unreliable. A

proper understanding of the factors leading to depolarization is necessary so
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that as RHIC is pushed to 250 GeV where even stronger resonances await,

RHIC can reliably deliver polarized protons to the experiments.

This thesis begins with an overview of spin dynamics in Synchrotrons in

chapter 2. Chapters 3-6 can be considered the first part dealing with AGS

polarization issues. Chapters 7-8 can be considered the second part, dealing

with RHIC polarization issues. In the first part I examined the problem of the

remaining weak intrinsic and coupled spin resonances in the AGS. Here the

development and testing of a new algorithm to calculate coupled spin reso-

nances is presented and three possible solutions to these remaining resonances

are discussed: the use of an additional family of quadrupoles to suppress the

remaining weak intrinsic resonance, the use of an additional family of skew

quadrupoles to suppress the coupled spin resonances and the use of a strong

partial snake to cure both the imperfection and intrinsic resonances.

In the second part in Chapter 7, special attention is paid to the snake

configuration in RHIC while in Chapter 8 evidence is presented for the very

first observation of two higher order snake resonances in RHIC, the 1/4 even

snake resonance and the 3/14 odd coupled snake resonance. in Chapter 9

we present our conclusions and suggestions for future issues which should be

considered.
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Chapter 2

General Theory of Spin

Resonances in Synchrotrons

The dynamics of the spin vector of a charged particle is determined by the

interaction of the magnetic moment with the surrounding magnetic field. In

the particle’s rest frame this is described simply by,

d�S

dt
= �µ× �B. (2.1)

Here �S is the spin vector of a particle and �µ is the magnetic moment. If we

transform to the laboratory frame then Eq. (2.1) becomes the Thomas-BMT

(Bargmann, Michel, and Telegdi ) Equation,

d�S

dt
=
e

γm
�S ×

(
(1 +Gγ) �B⊥ + (1 +G) �B‖ + (Gγ +

γ

γ + 1
)
�E × �β
c

)
. (2.2)
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�S is the spin vector of a particle in the rest frame, and �B⊥ and �B‖ are defined

in the laboratory rest frame with respect to the particle’s velocity. G = g−2
2

is the anomalous magnetic moment coefficient, and γmc2 is the energy of

the particle. Neglecting the electric field, we can transform this equation by

expanding about a reference orbit described by the Frenet-Serret coordinate

system shown in Fig. 2.1. Thus we have

dx̂

ds
=
ŝ

ρ
,
dŝ

ds
= − x̂

ρ
, and

dẑ

ds
= 0, (2.3)

where ρ is the local radius of curvature for the reference orbit. Particle motion

can be parameterized in this coordinate system as,

S

V

z

x

ro

Reference Orbit

Particle Position

Figure 2.1: The curvilinear coordinate system for a particle motion in a circular
accelerator. x̂ , ŝ and ẑ are the transverse radial, the longitudinal, and the
transverse vertical unit base vectors, and �r0(s) is the reference orbit.

�r = �ro(s) + xx̂+ zẑ. (2.4)
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Here �ro(s) is the reference orbit and ŝ = d�ro/ds. The velocity becomes

�v =
d�r

dt
=
ds

dt

(
x′x̂+

(
1 +

x

ρ

)
ŝ+ z′ẑ

)
≈ v(x′x̂+ ŝ + z′ẑ), (2.5)

�v′ = v
((
x′′ − 1

ρ

)
x̂+

x′

ρ
ŝ+ z′′ẑ

)
. (2.6)

All primes ′ represent derivatives with respect to s. The transverse magnetic

field can now be expressed as,

�B⊥ =
1

v2
(�v × �B)× �v = Bρ

(
1− x

ρ

)[(
x′′ − 1

ρ

)
ẑ +

z′

ρ
ŝ− z′′x̂

]
. (2.7)

Where we have made use of ds
dt

≈ v(1− x/ρ) and �v × �B = γmc
e

d�v
dt
. We should

also note that B⊥ρ = γmcv/e is the magnetic rigidity of the particle. To first

order, �B‖ can be found to be,

�B‖ ≈ (Bs +Bzz
′)ŝ. (2.8)

Using the dipole guiding field Bz = −B⊥ρ/ρ, the Bs field can be derived from

Maxwell’s equations obtaining,

∂Bs

∂z
=
∂Bz

∂s
= − (Bρ)

(
1

ρ

)′
, (2.9)

Bs = −Bρz
(
1

ρ

)′
. (2.10)
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Neglecting higher order terms,

�B‖ ≈ −Bρ
(
z

ρ

)′
ŝ. (2.11)

Then using d
dt
= v

ρ+x
d
dθ
the Thomas-BMT equation becomes

d�S

dθ
= �S × �F , (2.12)

where �F = F1x̂+ F2ŝ + F3ẑ and the elements are

F1 = −ρz′′(1 +Gγ)
F2 = (1 +Gγ)z′ − ρ(1 +G)

(
z

ρ

)′

F3 = −(1 +Gγ) + (1 +Gγ)ρx′′. (2.13)

Using dx̂
dθ
= ŝ, and dŝ

dθ
= −x̂ Eq. (2.12) becomes

dS1

dθ
= (1 + F3)S2 − F2S3,

dS2

dθ
= −(1 + F3)S1 + F1S3,

dS3

dθ
= F2S1 − F1S2. (2.14)

Expressed in the rotating frame Eq (2.12) then becomes

d�S

dθ
= �n× �S. (2.15)
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Where �n = −[F1x̂+ F2ŝ + (1 + F3)ẑ]. Since we are concerned only with spin

1/2 particles we can employ the well developed spinor formalism. Using the

Pauli matrices

σx =


 0 1

1 0


 , σs =


 0 −i
i 0


 , and σz =


 1 0

0 −1


 , (2.16)

the polarization can be given by

�S = Ψ†�σΨ. (2.17)

Substituting Eq. (2.17) into the left side of Eq. (2.15) yields

d�S

dθ
=
dΨ†

dθ
�σΨ+Ψ†�σ

dΨ

dθ
. (2.18)

Using [�σ · �n, �σ] = 2i(�n× σ) , the right hand side becomes

�n× �S = − i
2
(Ψ†�σ)�σ · �nΨ+ i

2
Ψ†�σ · n(�σΨ). (2.19)

Finally equating both sides gives

dΨ

dθ
= − i

2
(�σ · �n)Ψ = − i

2


 Gγ −ξ
ξ∗ −Gγ


Ψ. (2.20)

Where ξ(θ) = F1 − iF2 and to the first order we have neglected the (1 +

Gγ)ρx′′ term. Although the spinor wave function Ψ is similar in form to the

quantum mechanical state function, in this case �S is a classical vector. As in
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the quantum mechanical case, however, this two component spinor is defined,

Ψ =


 u

d


 . (2.21)

Here u and d are complex numbers representing the up and down components.

The components of the spin vector become

S1 = u∗d+ ud∗

S2 = −i(u∗d− ud∗)
S3 = |u|2 − |d|2. (2.22)

Because H = (�σ · �n) is hermitian,

|�S| = |u|2 + |d|2 = Ψ†Ψ (2.23)

and the magnitude of the spin vector remains constant. The normalization

condition for the spinor wave function is chosen to be Ψ†Ψ = 1.

When H = (�σ · �n) is independent of θ the spinor wave function can be
propagated using,

Ψ(θ2) = e
− i

2
H(θ2−θ1)Ψ(θ1). (2.24)

In the case where there are no longitudinal and radial fields ( ξ = 0 ) the

spinor wave function becomes simply

Ψ(θ2) = e
−iGγ

2
(θ2−θ1)σzΨ(θ1). (2.25)
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Thus we see that the spinor wave function will precess at a rate of Gγ turns

per revolution around the ring. This rate of precession is known as the spin

tune. Eq. (2.24) can be re-expressed using the spin transfer matrix formalism

so that e−
i
2
H(θ2−θ1) = t(θ2, θ1). The spin transfer matrix in the case of a one

turn map becomes

t(θi + 2π, θi) = e
−iπνsn̂co�σ (2.26)

where νs is the spin tune and n̂co is the spin closed orbit. The spin closed orbit

represents the unit vector around which the spin will precess as it orbits the

ring.

Depolarization of the spinor state function occurs when transverse or longi-

tudinal fields perturb the spin at the rate equal to the same fractional frequency

of the spin tune. These spin resonances can be broken down into three basic

types; imperfection, intrinsic and coupled spin resonances. All three are a re-

sult of spin kicks accumulated from vertical beam motion through quadrupoles.

They differ in the causes of the vertical motion. Imperfection resonances arise

from vertical closed orbit errors which are due to errors in the alignment and

field of the magnetic elements which comprise the lattice of the accelerator.

Since these errors are typically uncorrelated random errors they perturb the

spin once every period around the lattice and thus become significant when

the spin tune crosses an integer (Gγ = integer). Intrinsic resonances are due

to the natural vertical betatron oscillations as the particle traverses the lattice.

This vertical oscillation rate is known as the vertical betatron tune νz. Spin

kicks due to vertical betatron oscillations can add coherently when the frac-

tional part of the spin tune equals the vertical betatron tune. Coupled spin

13



Imperfection Gγ = N
Intrinsic Gγ = N ±νz
Coupled Gγ = N ±νx

Table 2.1: Three classes of spin resonances. N = integer.

resonances can occur in the presence of coupling elements such as solenoids

and skew quadrupoles. When linear coupling is present, the vertical oscilla-

tions around the ring will acquire an additional frequency component from the

horizontal betatron tune νx.

These three resonance conditions can be summarized in Table 2.1. These

resonances are particularly strong when N is a multiple of the periodicity of

the lattice.

To assess the magnitude of the resulting depolarization, the depolarizing

elements in Eq. (2.20) can be expanded in a Fourier series yielding,

ξ(θ) = F1 − iF2 =
∑
K

εKe
−iKθ (2.27)

where the Fourier coefficient or resonance strength εK is given by,

εK = − 1

2π

∮ [
(1 +Gγ)(ρz′′ + iz′)− iρ(1 +G)(z

ρ
)′
]
eiKθdθ (2.28)

and K is the resonance spin tune.

The effect of crossing an isolated resonance under a constant acceleration

rate permits an analytical solution to Eq. (2.20) yielding an expression for the
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final polarization known as the Froissart-Stora formula [9],

< Sz >= 2e
−π |ε|2

2α − 1, (2.29)

where α = dGγ
dθ
is the acceleration rate.

2.1 Snakes and Snake Resonances

A clever technique to avoid spin depolarizing resonances was proposed by Der-

benev and Kondratenko [3], using a local spin rotator to achieve a 180◦ rotation

of the spin vector about an axis in the horizontal plane. These spin rotators

are known as Siberian snakes. They force the spin tune in an accelerator to be

1/2 and thus energy independent. In this way all the imperfection, intrinsic

or coupled spin resonance conditions can be avoided.

However the work of Lee and Tepikian showed that when the normal

resonance strength is large a new class of spin-depolarizing resonance con-

ditions can occur [7] . These resonances are due to coherent higher-order

spin-perturbing kicks and are located at

νs + lK = integer, (l = integer). (2.30)

Here νs is the spin tune, K is the spin-depolarizing resonant harmonic and

l indicates the order of the snake resonance. Since the location of intrinsic

resonant condition depends on the vertical betatron tune, the snake resonance
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condition is equivalent to

δνz =
νs ± k
l
, (2.31)

where δνz is the fractional part of the betatron tune and k is any integer.

These snake resonances can be further classified in terms of l = odd or even.

Odd snake resonances are due to the coherent enhancement of the intrinsic

resonance by the spin perturbing kicks of the snake. Thus their strength

depends primarily on the strength of the associated intrinsic or coupled spin

resonance and the acceleration rate. However l = even snake resonances do not

manifest themselves until machine errors are introduced. In 1992 Lee showed

that the introduction of errors in the machine would cause these even order

snake resonances to appear [8]. The introduction of closed orbit errors result

in imperfection resonances which with the snake, overlap the nearby intrinsic

resonance. The result of these overlapping resonances is the generation of

even order snake resonances. The existence of an imperfection resonance can

perturb the spin tune by

νs,max/min =
1

2
± 1

π
arcsin[sin2 πεimp

Ns
] (2.32)

during the crossing of an imperfection resonance. Due to the spin tune pertur-

bation shown in Eq. (2.32), each snake resonance will spit into two separated

by

δνz ≤ | 1
πl
arcsin[sin2 πεimp

Ns
]| (2.33)

The strength of the imperfection serves to enhance the strength of the snake

resonances and split these resonances by a width given by Eq. (2.33).
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Chapter 3

Techniques for Calculation of

the Resonance Strength

Currently DEPOL is the primary software used to calculate spin resonance

strengths due to imperfection and intrinsic resonances. The algorithm used is

based on Courant’s and Ruth’s paper [1] where the integral in Eq. (2.28) is

evaluated by breaking it up into a sum over each element in the lattice:

εK =
∑
lattice

εKm, (3.1)

where

εKm = − 1

2π

∫ s2

s1

{(1 +K)(z′′ + iz
′

ρ
)− i(1 +G)(z

ρ
)′}eiKθ(s)ds. (3.2)
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Assuming that 1/ρ is a step function, constant in the element and zero just

outside the element, partial integration leads to an intermediate form,

εKm =
1

2π

[
(1 +K)(ξ1 + i)

ρ
z1e

iKθ1 +
(1 +K)(ξ2 − i)

ρ
z2e

iKθ2

−(1 +K)
∫ s2

s1

z′′eiKθds− K
ρ2
(K −G)

∫ s2

s1

zeiKθds

]
, (3.3)

where ξi are contributions due to edge focusing of the magnet and zi = z(si).

Applying partial integration again we obtain,

εKm =
1

2π

[
(1 +K)(ξ1 + i)

ρ
z1e

iKθ1 +
(1 +K)(ξ2 − i)

ρ
z2e

iKθ2 − (1 +K)×(
(z′2 −

iK

ρ
z2)e

iKθ2 − (z′1 −
iK

ρ
z1)e

iKθ1

)
+ (
K(K2 +G)

ρ2
)

∫ s2

s1

zeiKθds

]
.(3.4)

In the uncoupled case this integral is evaluated using the homogeneous equa-

tion z′′ = −kzz. Substitution using this equation allows an exact evaluation
of Eq. (3.4).

In the case of linear coupling however, the homogeneous equation is no

longer valid for all the elements. So we proceed by block diagonalizing the

individual transfer matrices for the coupling elements. Thus we hope to trans-

form the z coordinate into a basis where a new homogeneous equation is true.

The technology to accomplish this has been already developed by Teng [10].

Given an element with off diagonal values in the 4× 4 transfer matrix,

Me =


 Ae Be

Ce De


 , (3.5)
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the 2× 2 submatrices A,B,C and D can be used to develop a transformation

which will block diagonalize Me. (The subscripts e denote that only single

element transfer matrices are being considered as opposed to the one turn

transfer matrix.) The result is

ReMeR
−1
e =


 Ee 0

0 Fe,


 (3.6)

Re =
1√

1 + |re|


 I −re
re I


 , (3.7)

re = −
(
Tr(A−D)

2
±
√

|B + C|+ Tr
2(A−D)
4

)
B + C

|B + C| . (3.8)

The bar on C indicates a symplectic conjugate, which is defined as

C = −SCTS, (3.9)

with S being the matrix

S =




0 1

−1 0

0 1

−1 0

.

.



. (3.10)

Working with the canonical pairs (x, px/ps) and (z, pz/ps) with pz/ps ≈ z′ and
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px/ps ≈ x′ outside each element, we can use Re to transform them to a locally

uncoupled basis a, a′, b, b′ using,




x

x′

z

z′



= R−1

e




a

a′

b

b′



. (3.11)

In this basis the homogeneous equations a′′ = −kaa and b′′ = −kbb will hold.
kaand kb can be determined by considering that most elements can have their

transfer matrices cast in the form 1,


 a2

a′2


 =


 cos(ϕa)

sin(ϕa)√
ka

−√
ka sin(ϕa) cos(ϕa)




 a1

a′1


 . (3.12)

Thus ka = −Ee2,1

Ee1,2
and kb = −Fe2,1

Fe1,2
. So to solve the integral in Eq. (3.4) we can

write z = [re1,1a+ re1,2a
′ + b] 1√

1+|re|
to obtain,

∫ s2

s1

zeikθds = − 1√
1 + |re|

∫ s2

s1

[
re1,1

a′′

ka
+
b′′

kb
− re1,2a

′
]
eiKθds. (3.13)

Now using an integration technique similar to the original DEPOL [1] paper,

∫ s2

s1

a′′eiKθds =
(a′2 − iK

ρ
a2)e

iKθ2 − (a′1 − iK
ρ
a1)e

iKθ1

1−K2/kaρ2
, (3.14)

1Here ka and kb may be complex.
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we obtain a final closed expression,

∫ s2

s1

zeiKθds =
1√

1 + |re|

[(
iK

ρ
re1,2 − re1,1

)(
(a′2 − iK

ρ
a2)e

iKθ2 − (a′1 − iK
ρ
a1)e

iKθ1

ka −K2/ρ2

)

−
(
(b′2 − iK

ρ
b2)e

iKθ2 − (b′1 − iK
ρ
b1)e

iKθ1

kb −K2/ρ2

)
+ re1,2(a2e

iKθ2 − a1e
iKθ1)

]
. (3.15)

Thus our final expression for the resonance contribution from each element is,

εKm =
1

2π

[
(1 +K)(ξ1 + i)

ρ
z1e

iKθ1 +
(1 +K)(ξ2 − i)

ρ
z2e

iKθ2

− (1 +K)
(
(z

′
2 −

iK

ρ
z2)e

iKθ2 − (z′1 −
iK

ρ
z1)e

iKθ1

)
+

(
K(K2 +G)

ρ2

)

×
[

1√
1 + |re|

(
(
iK

ρ
re1,2 − re1,1)

(
(a′2 − iK

ρ
a2)e

iKθ2 − (a′1 − iK
ρ
a1)e

iKθ1

ka −K2/ρ2

)

−
(
(b′2 − iK

ρ
b2)e

iKθ2 − (b′1 − iK
ρ
b1)e

iKθ1

kb −K2/ρ2

)
+ re1,2(a2e

iKθ2 − a1e
iKθ1)

)]]
.

(3.16)

Of course for those elements which are already block diagonal we can neglect

the local rotation to a diagonal basis and employ the original form,

∫ s2

s1

zeiKθds =
(z′2 − iK

ρ
z2)e

iKθ2 − (z′1 − iK
ρ
z1)e

iKθ1

kz −K2/ρ2
. (3.17)
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3.1 Implementation of the New DEPOL Algo-

rithm

DEPOL derives the z1,2 and z
′
1,2 values necessary to evaluate the resonance

amplitude from MAD software [11]. However when MAD evaluates under

conditions of linear coupling it employs u and v coordinates which correspond

to the bloc diagonal basis for the one turn transfer matrix. To correctly eval-

uate the resonance strength we must transform back to the original basis to

obtain x, x′, z, z′. So in our code we read in values for the R matrix and use

it to transform the u, u′, v, v′ back to the x, x′, z, z′ basis. From here we can

then implement Eq. (3.16) or (3.17) for each element.

There is an additional complication in the implementation of this program

which is an expression of the subtleties of Eq. (2.28). In the original DEPOL

code implicit use was made of the properties of the enhancement function

ζN(x) [22] which is defined as

ζP (x) =
sinPπx

sin πx
. (3.18)

For x = N (N = 0,±1,±2, ....), ζP (x) goes to (−1)NP for even P and P

for odd P . When Gγ is on a resonance, the enhancement function yields the

exact contribution to the resonance amplitude from one turn around all the

elements in the accelerator lattice. However since we are dealing with a Fourier

expansion in non-integer K values, the actual integral in Eq. (2.28) must go

from minus infinity to plus infinity. When evaluating resonances due to linear

coupling an integral only once around the lattice will yield a superposition
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of enhancement functions due to both vertical and horizontal tunes. In this

case we are forced to integrate Eq. (2.28) over many passes to obtain a good

approximation for the resonance strength. This slows the functioning of the

code down considerably.

However if we look closely at the behavior of the elements which make up

the integral to be evaluated in Eq. (2.28), it appears that we can factor out

the phase element which changes with each period around the lattice. The

remaining elements in the sum remain constant for each pass. The factored

phase elements can be evaluated analytically using the properties of a geomet-

ric series. The result is four separate enhancement functions,

Eu(N)± =
N∑
n=0

ei2πn(K±νu)

= ±eiNπ(K±νu) sin (π(N + 1)(K ± νu))
sin (π(K ± νu))

Ev(N)± =
N∑
n=0

ei2πn(K±νv)

= ±eiNπ(K±νv) sin (π(N + 1)(K ± νv))
sin (π(K ± νv)) (3.19)

Here νu and νv the betatron tunes in the uncoupled u and v basis. N the

number of passes around the lattice. The function once evaluated can then

be multiplied by the appropriate terms in the sum over one pass in the lattice

(see Appendix B for details).

Another issue concerns the measurement of emittance. Normally most

operations software is set up to evaluate the emittance provided there is no

coupling. So a method was developed to transform incorrect measurements
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taken in the AGS for the emittance, εx and εy values and transform them to

correct measurements of εu and εv. This is detailed in appendix C.
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Chapter 4

The Configuration of the AGS

The Brookhaven Alternating Gradient Synchrotron (AGS) is the third stage in

a complex of accelerators which accelerates polarized protons to 25 GeV. The

fourth and final stage culminates in the Relativistic Heavy Ion Collider (RHIC)

which takes protons and gold ions up to 250 GeV and 100 GeV respectively.

For polarized protons the process begins with a source of optically pumped

polarized ions of H− (OPPIS) [12]. These ions are then accelerated to 200

MeV through a radio frequency quadrupole in a linear accelerator. They are

then strip-injected into the AGS booster and accelerated to 1.5 GeV. During

injection in the AGS only one bunch of the 12 rf buckets were filled and

accelerated to 25 GeV for final injection into RHIC. The full scheme is shown

in Fig. 4.1

In the AGS a partial solenoidal snake was employed to overcome imperfec-

tion resonances [13], and an ac dipole was used to overcome strong intrinsic

resonances [14]. In past years the AGS was operated with an acceleration
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Figure 4.1: Schematic of the AGS and RHIC complex.

rate of dGγ
dθ

= α = 4.8 × 10−5, where G is the anomalous magnetic moment

coefficient and θ the orbital bending angle. However during the 2002 run a

backup power supply was used for the magnets resulting in a ramp rate of

α = 2.4 × 10−5. The lower acceleration rate made the use of a weaker par-

tial snake possible since at a slower acceleration rate effective spin flipping

due to the imperfection resonances is enhanced. Lowering the partial snake

strength has the advantage of reducing the effective strength of the coupled

spin resonances but this is offset by an increase in the depolarization during

weak intrinsic resonance crossing (a direct consequence of the Froissart-Stora

formula) . In the past a 5% partial snake was used. During this run a modified

partial snake ramp was found to be the most effective. The current control
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of the partial snake was set up to start with a 3% snake from injection at

Gγ = 7.5 and ramp up to 5% by Gγ = 21.

The AGS is also equipped with a family of six skew quadrupoles located

in the 17th straight section of superperiods B,D,F,H,J and L next to the hor-

izontal tune quadrupoles. They are 0.39088 m in length and the current can

range from 0 to a maximum of 500 A which corresponds to
∫

∂Bz

∂z
ds = 0.84 T.

In addition a family of 12 vertical and horizontal tune quadrupoles are located

in the 3rd and 17th straight section of each superperiod. They have the same

length and current to field transfer ratio as the skew quadrupoles.

4.1 Polarization Measurement

At 200 MeV the beam polarization is measured with elastic scattering from

a carbon fiber target. In the AGS polarization was measured using the in-

ternal polarimeter installed in the 20th straight section of the C super-period

designed for energies of 4 GeV to 25 GeV. The polarimeter measured left-right

asymmetry of the p−p elastic scattering processes of a proton beam scattering
off a Carbon target. The polarimeter consists of two recoil arms oriented at

77.25◦ away from the beam on the left and right side. These arms each held

two scintillator counters, a hodoscope, Al wedge, dE/dX counter and a Veto

counter. In this way the left-right asymmetry was measured and calculated:

δ =

√
L ↑ R ↓ −√

L ↓ R ↑√
L ↑ R ↓+√

L ↓ R ↑ . (4.1)
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Here L ↑ and L ↓ are the number of events in the left arm when the beam

polarization is up and down respectively, and R ↑ and R ↓ are the number of
events in the right arm. To reduce systematic error the polarization alters

direction between up and down for every AGS cycle. From the left-right

asymmetry measurement δ, beam polarization P can be calculated,

P =
1

A
δ. (4.2)

The analyzing power A was determined using an empirical formula from [15].
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Figure 4.2: Analyzing power A as a function of Gγ. Data obtained from [16].
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4.2 AGS Partial Snake

The partial solenoidal snake is located in the 10th straight section of the I

super-period. It is 2.43 meters long with a maximum integrated strength of

4.7 T-m [17]. A 100% snake achieves a full 180◦ spin rotation, while a 5%

snake can only achieve 5% of 180◦ or a φ = 9◦ spin rotation. In the presence

of this perturbation the spin tune νs will deviate from Gγ according to

cosπνs = cosπGγ cos
φ

2
. (4.3)

With φ = 9◦ the spin tune will never equal an integer, and thus the imper-

fection resonance condition is avoided completely. For a given solenoidal field

strength the corresponding spin rotation angle φ drops off with momentum.

Thus the solenoid must be ramped along with acceleration in order to maintain

a constant spin rotation angle φ.

4.3 AGS ac Dipole

The ac dipole was first installed and tested in the AGS in 1999 [14]. It is

located in the 10th straight section of superperiod A. It is 0.8128 m long by

0.3048 m wide by 0.2225 m high.The whole assembly forms a resonant LC

circuit. The ac dipole was driven by an amplified WavTek function generator.

At each of the strong intrinsic resonances 0 + νz , 12 + νz and 36 ± νz the
generator was triggered by the AGS Gauss Clock system.

One of the major concerns during operation of the ac dipole is to control
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the separation between the ac dipole’s drive frequency and the vertical be-

tatron tune. If the frequency separation is too large then a full spin flip is

unachievable, but if the frequency is too close then the beam can be lost or

have too much emittance growth. During the 2002 polarized proton run this

proved to be a significant problem due to current fluctuations in the AGS tune

quadrupoles. Of particular concern was the 0 + νz resonance crossing which

required a coherence resulting in the loss of a portion of the beam on the aper-

ture. As well, the benefit of the ac dipole during the 36+νz resonance crossing

came into question so the use of the ac dipole during the 36 + νz resonance

crossing was abandonedin the final days of the 2002 run.
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Chapter 5

Comparision with Experimental

Results

During the 2002 polarized proton run we had the opportunity to gather data

on the response of the weak intrinsic and coupled spin resonances in the AGS

to various tune settings, solenoidal strength settings and skew quadrupole set-

tings. What follows is a presentation of this data compared with calculated

results using the enhanced version of DEPOL in conjunction with MAD. Fit-

ting our experimental data to MAD and DEPOL calculations required the

consideration of rolls in the main combined function magnets. These rolls ac-

count for the observed skew quadrupole moment observed in the ‘bare’ AGS

(ie. with only the main combined function magnets on). Figs. 5.1 - 5.2 show

the results of scan in energy versus polarization from Gγ = 7.5 to 46.5. Along

with this we plotted the corresponding DEPOL calculated polarization values

for the corresponding acceleration and emittance values. These scans where
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taken by adjusting the AGS main magnet function to ramp up to six succes-

sively higher flattop values from Gγ = 7.5 to 46.5.
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Figure 5.1: Polarization versus Gγ scan taken in a 6 hour period during the
2002 polarized proton run in the AGS. Due to miscalibration of the ac dipole
at 0 + νz we fixed the Gγ = 12.5 to the measured value. By including rolls in
the main bending magnets coupling is enhanced thus fitting more accurately
our measured data.

For this case the baseline DEPOL calculation was fixed to the Gγ = 12.5

asymmetry measurement of 14.9 × 10−3 with 25.55 × 10−3 analyzing power

(polarization = 58.3%). This was done because crossing the 0 + νz resonance

using the ac dipole proved to be problematic during this particular run. To
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Figure 5.2: Polarization versus Gγ scan taken in a 6 hour period during the
2002 polarized proton run in the AGS. This is the same plot as Fig. 5.1 with
out fixing Gγ = 12.5 to the measured value.

obtain a maximum polarization transmission the necessary coherence ends up

scrapping a portion of beam on the beam pipe aperture. The effects of this

are not clearly understood. In my opinion the sensitivity of this crossing has

been the dominating factor in determining the variability of our asymmetry

measurements which at top energy ( Gγ = 46.5 ) ranged from 0 to 1.8× 10−3.

However we found that 1.5×10−3 was a very reproducible value. Additionally

at Gγ = 12.5 it was possible to produce a maximum asymmetry of 16.4×10−3

if properly tuned.
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5.1 Study of Weak Instrinsic Resonances

At several of the flattop settings we found time to perform a quick scan of

the response of polarization to tune for the weak intrinsic resonances. These

graphs are shown in Figs. 5.4 to 5.6. Since we did not have the use of a

horizontal tune meter throughout the whole 2002 run, all DEPOL calculations

were made using the measured input currents to the horizontal and vertical

tune quadrupoles. The tunes quoted in all the AGS graphs are set point tunes.

Since much work in the past has been devoted to developing an accurate model

of the AGS lattice for use in MAD, tune calculation performed in the MAD

model present a good representation of the actual tunes in the AGS. In Fig. 5.3

the bare AGS and MAD tune calculations are shown to be in good agreement.

In Fig. 5.4 we can see a plot of polarization at Gγ = 18.5 versus the hori-

zontal tune at the 24−ν resonance crossing. We found that attempts to correct
the 9th orbital harmonic while on the Gγ = 18.5 flattop ramp produced a large

polarization response. These corrections caused a variation in asymmetry from

10 × 10−3 to 9 × 10−3. The sensitivity of asymmetry measurements to orbit

corrections support speculation that this extra loss is due to the feed down

from the sextupole fields. So we see that the addition of closed orbit errors

can effect the strength and structure of intrinsic resonances. Another possible

explanation is the existence of uncorrected imperfection resonances. In fact

there is a precedence for this supposition, since earlier on during this experi-

ment the existence of a corrected imperfection resonance between Gγ = 30.5

and Gγ = 34.5 prompted a modification of the partial snake strength and

the construction of a modified snake ramping routine. In this routine the
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Figure 5.3: AGS bare machine tunes are plotted versus momentum. Here
line labeled SN 182 represent the measured tunes performed by J. Poiter, et.
al., the line labeled TN43 and Bnlmad represent MAD calculations from two
lattices and the line labeled optics control represents the current tune control
program’s predictions.[18]

snake was kept at 3% from injection to Gγ = 12 + ν and ramped up to 5%

to Gγ = 46.5. Possibly a combination of effects could explain the deviation

from the expected DEPOL values, since vertical closed orbit errors could in-

troduce both uncorrected imperfection resonances and an intrinsic resonance

effect through the feed down of sextupole fields in the vertical plane.

In Figs. 5.5 to 5.6 we see further evidence which the role an uncorrected

closed orbit could be playing. Across all of these resonances it was found that

the introduction of a vertical closed orbit error zrms > 1 mm could improve
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the fit of DEPOL calculations through the sextupole feed down. The best

estimate of closed orbit errors in the AGS range from zrms = 1 to 2 mm . In

future runs, much consideration should be given to correct the orbit since an

uncorrected orbit can both hamper the performance of the partial snake and

modify the structure of the intrinsic resonances.
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Figure 5.4: 24−ν resonance crossing as a function of horizontal tune measured
at Gγ = 18.5 flattop plotted with DEPOL predictions assuming initial polar-
ization was the same as measured at Gγ = 12.5 , 58%. Plots are with and
without added closed orbit distortions Zrms = 1.43mm and Xrms = 0.067mm.
Emittances in vertical were 10π mm-mrad.
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Figure 5.5: 24+ν resonance crossing as a function of horizontal tune measured
at Gγ = 34.5 flattop plotted with DEPOL predictions assuming initial polar-
ization at Gγ = 30.5 to be 43%. Plots with and without added closed orbit
distortions Zrms = 1.17mm and Xrms = 0.079mm. Emittances in the vertical
were 23π mm-mrad.

5.2 Study of Coupled Spin Resonances

The primary source of coupling in the AGS is the partial solenoidal snake. In

addition there exists a family of six skew quadrupoles. It has been observed

that the bare AGS machine has a net skew quadrupole moment. Work with

slow beam extraction has also shown that a family of skew quadrupoles needs

to be powered at 50 A in order to alleviate the effects of coupling in the bare

AGS. Using this value an estimate of the magnitude of the average roll was

found to be 0.15 mrad. Coupling studies from 15 years ago estimated the
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Figure 5.6: 48 − ν resonance crossing as a function of horizontal tune mea-
sured at Gγ = 41.5 flattop, plotted with DEPOL predictions assuming initial
polarization at Gγ = 34.5 to be 32%. Curves are with and without added
closed orbit distortions Zrms = 1.98mm and Xrms = 0.13mm. Emittances in
the vertical were 23π mm-mrad.

average roll to be 0.13 mrad [19].

Additionally closed orbit errors can contribute to coupling via feed down

from the sextupole fields present in the AGS combined function magnets and

sextupole magnets. However for the coupled spin resonance calculations closed

orbit errors did not seem to have as profound an effect on the structure of the

response of the resonance as it did for the weak intrinsic calculations. The

inclusion of closed orbit errors served only to shift the whole curve without

affecting the overall structure.
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During the 2002 polarized proton run, particular attention was paid to

studying the impact of the coupled spin resonances during the 0+ν resonance

crossing. This was done because at this low energy the analyzing power of

the AGS polarimeter was sufficiently large to generate accurate measurements

and the strength of the 0+ν coupled spin resonance was large. Initial DEPOL

calculations without rolls generated curves which were too broad. It was only

by including either a large single roll or selectively placed rolls that a good

fit to the measured data was achieved. For all DEPOL calculations shown

here I have included selectively distributed rolls applied to the CF magnets

1 ( 0.05 mrad per magnet) and applied to the BD magnet 2 ( 0.25 mrad per

magnet ). This is not unreasonable considering previous estimates. However

it should be emphasized that this configuration is by no means unique. While

it was essential to include a net skew quadrupole moment in the bare AGS,

the distribution and the direction of these rolls is still unclear since many

different configurations could fit our data. Either a survey of these rolls needs

to be commissioned or perhaps a method similar to the ”action phase jump

technique” [20] used in RHIC could be used in the AGS.

In Figs. 5.7 - 5.9 one can see the results of our tune scans, snake scans

and skew quadrupole scans. All calculations assume a 70% polarization at

injection into the AGS. In all cases we were able to achieve a good agreement

between simulated and measured polarization.

1CF is the label for a family of combined function focusing magnets located at 13,14,17
and 18 positions in each super-period

2BD s the label for a family of combined function defocusing magnets located at 11,12,19
and 20 positions in each super-period
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Figure 5.7: Polarization after crossing the 0+νx and 0+νz resonances with fixed
vertical and horizontal tunes ( νz = 8.8 , νx = 8.78 ). Scanning through skew
quadrupole input currents from 0 to 25 Amps. The vertical and horizontal
emittances were measured at (11± 1)π and (21± 1)π mm-mrad. In addition
a distributed roll was applied to the BD and CF magnets as described in this
section.
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Figure 5.8: Polarization after crossing the 0+νx and 0+νz resonances with fixed
vertical tune (νz = 8.8) scanning horizontal tunes. Vertical and horizontal
emittances were measured at (13±1)π and (21±1)π mm-mmrad respectively
for DEPOL calculations. In addition a distributed roll was applied to the BD
and CF magnets as described in this section.
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Figure 5.9: Polarization after crossing the 0 + νx and 0 + νz resonances with
fixed vertical tune and horizontal tune (νz = 8.8 , νx = 8.7 ) scanning from 4 to
10% partial snake strength. Vertical and horizontal emittances were measured
to be (8± 1)π and (30± 1)π mm-mrad for DEPOL calculations. In addition
a distributed roll was applied to the BD and CF magnets as described in this
section.
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Chapter 6

Three Solutions to Reduce

Depolarization in AGS

There are three major types of resonances observed in the AGS, imperfection,

intrinsic and coupled. Imperfection resonances have been cured using a 3-5%

partial solenoid snake [21], and the strong intrinsic resonances using an ac

dipole [14]. However the solenoid snake has introduced a strong linear cou-

pling spin resonance which still remains to be dealt with. Using the software

described in the previous chapters we consider three techniques to minimize

the effect of both the weak intrinsic and coupled spin resonances.
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6.1 The AGS Intrinsic Resonance Structure

It is useful to understand the behavior of the dominant ρz′′ term in the reso-

nances integral Eq. (2.28). The resonance strength can be approximated by

ε ≈ −1 +Gγ
2π

∮
z′′eiKθds = +

1 +Gγ

2π

∮
kz(s)ze

iKθds. (6.1)

Here we have used the homogeneous equation z′′ = −kzz. For intrinsic reso-
nance we can use the equation for betatron motion and Eq. (6.1) becomes,

ε ≈ 1 +Gγ

2π

√
εN
πγ

∮
kz(s)

√
βz(s) cos(νzφz(s))e

iKθds. (6.2)

Here β the betatron function, εN the normalized emittance, φ the betatron

phase and θ the angular location in the ring.

The AGS lattice is made up of twelve super-periods each containing twenty

combined function magnets of long and short lengths. In Fig. 6.1 a graphical

representation of the lattice is shown. The resulting structure proves fairly

complex. But some general observations are possible. The lattice can be bro-

ken down into two sections which are anti-symmetric. Further these sections

can be broken down into a total of four sections of two anti-symmetric pairs.

There are also two mirror symmetric pairs. While clearly the overriding peri-

odicity of 12 places all our intrinsic resonances at 12n±υz , the anti-symmetric
structure can explain the odd and even substructure of the resonances. This

explanation follows in a manner similar to the evaluation of a typical FODO

lattice structure. In a standard FODO lattice the Focusing and Defocusing el-

ements (which are anti-symmetric pairs) can contribute additively to the spin
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kick when the resonance is odd (n = odd) [22].

Applying this logic to the AGS lattice we can see that the middle two anti-

symmetric pairs can be viewed as having an overall sign difference when seen as

a whole. The same is true for the outer two anti-symmetric pairs. For the AGS

we know that φ ≈ θ so between the anti-symmetric pairs there will always be
phase difference of (K ± νz)mπ

12
. Here m is some integer determined by which

pair is being counted. So at the intrinsic resonance where K = 12n± νz, the
anti-symmetric elements should contribute additively to the spin kick when n

is odd and subtract when n is even. This explains why we see in Table 1 that

the odd resonances tend to be larger than the even ones (except when n = 0).

1          2          3          4          5          6          7          8          9          10          11          12          13          14          15          16          17          18          19          20

Figure 6.1: AGS superperiod. Here the up and down vectors show the direction
and magnitude of the focusing gradients.

6.1.1 Suppression of the Weak Intrinsic Resonances

The complexity of the lattice seems to prohibit a real increase in the super-

periodicity of the lattice without significant and costly re-modifications. While

there exist many points of overall mirror symmetry, it is clear that neither a sin-

gle nor several quadrupoles can increase the overall periodicity. If we approach

45



γ Gγ Re(εk) Im(εk) | εk |
4.871 0+υ 0.006128 -0.000271 0.00613421
8.515 24-υ 0.000240 0.000011 0.00023988
11.565 12+υ 0.000094 0.002118 0.00211998
15.208 36-υ -0.000248 0.005589 0.00559465
18.258 24+υ 0.000507 -0.000022 0.00050779
21.902 48-υ 0.000652 0.000029 0.00065232
24.951 36+υ 0.000479 0.010820 0.01083078

Table 6.1: Resonance strengths εk as calculated by DEPOL for the bare AGS
machine using the rms emittance for a 10 π mm-mrad beam.

the problem from a purely spin matching aspect then it seems that individual

resonances can be suppressed with a well placed family of quadrupoles. Since

our resonance structure shows that the 12n ± υz, n=even resonances are pri-
marily real and the n=odd are primarily imaginary, a family of quadrupoles

of the right strength and phase location could suppress individual resonances.

Since the strength and location of resonances are tied to the symmetry of

each super-period and the periodic structure of the lattice, one strategy to

suppress or enhance a resonance is by the careful placement and field strength

setting of quadrupole elements. It is well known that in certain instances

using carefully placed families of quadrupoles it is possible to suppress indi-

vidual resonances by the introduction of a countervailing perturbation to the

resonance strength which can be approximated by [22],

∆εk = (
1 +Gγ

4π
)

√
εN
πγ

∫
∆g(s)

√
β(ei(νϕ−kθ) + e−i(υϕ−kθ))ds. (6.3)

We use ∆g(s) = 1
Bρ

∂Bz

∂x
as the focusing strength. This equation will give a good
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approximation providing that both ∆g(s) and ∆β(s) are small. It seems that if

we use just the right field strengths and locations, we can use this perturbation

to cancel our existing resonance. This is known as spin matching.

It might prove insightful if we try to develop an analytical approximation

to Eq. (6.3) If we consider the effect of only one additional quadrupole per

super-period, Eq. (6.3) can be integrated as a sum over the number of super-

periods in the lattice. Using a thin lens approximation this series can then be

summed using the properties of a geometric series to give,

∆εk = (
1 +Gγ

4π
)

√
εN
πγ

{ei(υ+k)(P−1
P

)πζP (
k + ν

P
)[g1
√
β1e

i(νϕ1+kθ1)]+

ei(k−υ)(P−1
P

)πζP (
k − ν
P

)[g1
√
β1e

i(kθ1−νϕ1)]}. (6.4)

Here θ1 and ϕ1 are the angle and betatron phase at the quadrupole’s position.

We also assume that we are inserting one quadrupole per superperiod (P).

If we pick the location of the quadrupole wisely then we can control either

the imaginary or real part of the resonance. So for example in the AGS where

θ ≈ ϕ, if we choose the 15th position which corresponds to 22.5◦ then we

can control the real part for all 12n ± υ with n even and the imaginary part
for odd n. In principle, provided that there are no other limitations, we can

suppress these components of the resonance strength to an arbitrary degree.

This is exactly what Lehrach showed in his paper[2] on suppressing intrinsic

spin harmonics. We re-confirmed his results in Figs. 6.2 - 6.3 where the 24±υ
and 48−υ have been successfully suppressed using a family of 12 quadrupoles
of identical design as the existing tune quadrupoles.
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Figure 6.2: Polarization after crossing the 24−νz resonance with fixed vertical
tune and horizontal tune (νz = 8.7 , νx = 8.8). Scanning currents for a set of
hypothetical quadrupoles at the 15th position in the each superperiod. The
vertical rms emittance for a 10π mm-mrad beam was used. The acceleration
rate was α = 2.4× 10−5 and snake strength set to 3%.

Considering the use of the AGS’s vertical and horizontal tune quadrupoles

to effect the weak spin resonances, we find since 24 and 48 yield both imag-

inary and real resonance contributions these quadrupoles are located at the

3rd (ϕ = 4.5◦ )and 17th (ϕ = 25.5◦ ) position in the lattice. If both the hori-

zontal and vertical quadrupoles were activated at once, a configuration could

be constructed where either the imaginary or real part of the perturbation

would cancel out leaving only a single real or imaginary component. However
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Figure 6.3: Polarization after crossing the 24+νz resonance with fixed vertical
tune and horizontal tune (νz = 8.95 , νx = 8.6). Scanning currents for a set of
hypothetical quadrupoles at the 15th position in the each superperiod. The
vertical rms emittance for a 10π mm-mrad beam was used. The acceleration
rate was α = 2.4× 10−5 and snake strength set to 5%.

the field strength requirements would require leaving the 8.5-9.0 vertical and

horizontal tune space and further require a field strength beyond the capacity

of the existing quadrupoles.

6.2 AGS Coupled Spin Resonance Structure

The presence of skew quadrupoles, solenoids and closed orbit distortions through

sextupoles lead to coupling between the horizontal and vertical betatron os-
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Figure 6.4: Polarization after crossing the 48−νz resonance with fixed vertical
tune and horizontal tune (νz = 8.7 , νx = 8.6). Scanning currents for a set of
hypothetical quadrupoles at the 15th position in the each superperiod. The
vertical rms emittance for a 10π mm-mrad beam was used. The acceleration
rate was α = 2.4× 10−5 and snake strength set to 5%.

cillations. In this case vertical betatron motion can be expanded into normal

modes. Near a single coupling betatron resonance (νx−νz = l, l = 0,±1,±2...)
the vertical betatron motion can be approximated.

zβ ≈
√
βzεz
π
cos(ν±φz + χ±) + Cx

√
βxεx
π

cos(ν±φx + χ±) (6.5)
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Where ν± are the normal mode tunes given by

ν± =
1

2
(νx + νz ± l)± 1

2
λ, λ =

√
(νx − νz − l)2 + |C−|2 (6.6)

and the coupling coefficient is given by

Cx =
|C−|

|νx − νz − l|+ λ (6.7)

with

C− =
1

2π

∮ √
βxβzAxze

i(νxφx−νzφz−(νx−νz−l)s/R)ds. (6.8)

Here φx,z are the horizontal and vertical betatron phases respectively, R is the

average radius of the accelerator, and Axz is given by

Axz =

{
∂Bx

∂x

Bρ
+
B‖
2Bρ

[(
αx
βx

− αz
βz

)
+ i

(
1

βx
+
1

βz

)]}
(6.9)

where 1
Bρ

∂Bx

∂x
is the skew quadrupole gradient, B‖ is the solenoid field strength,

and αx,z are the usual Twiss parameters.

Since resonances are in general due to spin coherent oscillations in the

vertical plane, we can see from Eq. (6.6) that the introduction of a horizontal

frequency in the vertical plane will yield a new resonance associated with

the horizontal tune. The strength of this coupled spin resonance will be a

function of the coupling coefficient, which itself is a function of the strength of

the distributed coupling elements in the lattice and the distance between the

horizontal and vertical tunes.

Clearly a strategy for reducing the effect of coupled spin resonances should
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γ Gγ Re(εk) Im(εk) | εk |
4.871 0+ νx 0.000750068 0.000985029 0.001238064
11.565 12+ νx -0.000293056 0.000268527 0.000397626
15.208 36- νx 0.000846892 0.000620968 0.001050869
24.951 36+ νx -0.001736388 0.001412348 0.002238584

Table 6.2: Coupled Spin Resonance strengths εk as calculated by DEPOL for
the bare AGS machine with a 5% snake and including distributed roll applied
to the BD and CF magnets as outlined in Chapter 5. The rms emittance for
a 10 π mm-mrad beam was used.

include maintaining maximal separation between the horizontal and vertical

tunes. Additionally it is possible that introducing countervailing coupling ele-

ments to cancel the effects of existing coupling can further reduce the strength

of the coupling coefficient. In the case of the AGS it might be possible to re-

duce or eliminate coupling induced by the solenoidal snake using the existing

skew quadrupoles plus a second family of skew quadrupoles powered at the

right strength.

6.2.1 Suppression of the Coupled Spin Resonances

The AGS already is equipped with six skew quadrupoles located in the 17th

location at every other super period. To globally decouple the AGS ideally one

should pick a location with as large a phase difference from the existing skew

quadrupoles. Unfortunately we are limited in the number of free locations.

The 15th location which has been suggested for the future normal quadrupole

could also accommodate a skew quadrupole.

Unfortunately the field strength required to approach a situation of global
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decoupling causes a large tune shift in the AGS which makes identifying the

proper strengths necessary to decouple the machine difficult if not impossible.

However since we are concerned with eliminating the coupled spin resonances

and not necessarily decoupling the AGS a spin matching condition similar to

what was observed with the weak intrinsic resonances is possible. In Figs. 6.5-

6.8 we have fixed our vertical and horizontal tunes ( νz = 8.8, νx = 8.7 )

and scanned through various current strengths for the 15th and 17th skew

quadrupoles. For all four resonances a solution appears possible, however

overcoming the 36 + νx requires a current in excess of 1200 A. This high

current might prove difficult but since it needs to be maintained only during

the brief milliseconds of the resonance crossing it should be possible. All

calculations were done assuming the 15th skew quadrupole would be identical

to the existing 17th skew family.

Actually since the calculations were all done using the slower acceleration

rate of α = 2.4×10−5 generated by the old backup Westinghouse power supply,

and not the usual α = 4.8× 10−5 which is normally achieved by the Siemens

power supply depolarization could effectively be overcome with a stronger

residual resonance.

6.3 The Strong Partial Snake Experiment

The presence of a partial snake of strength r modifies the spin νs according to

cosπνs = cos
rπ

2
cosGγπ. (6.10)
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Figure 6.5: Polarization after crossing the 0+ νx resonance with fixed vertical
tune and horizontal tune (νz = 8.8 , νx = 8.7). Scanning currents for a
hypothetical skew quadrupole in the 15th lattice position and the 17th skew
quadrupole family fixed at 256 A. The vertical rms emittance for 95% of a 10
π mm-mrad beam was used. The acceleration rate α = 2.4 × 10−5 and the
snake strength set to 5%.

Normally with a full snake r = 1 thus forcing the spin tune to be 0.5, how-

ever when r is small the spin tune returns to its original energy dependency

becoming nearly equal to Gγ. However when Gγ becomes an integer the spin

tune νs encounters a discontinuity and the spin tune will jump from −r/2 to
+r/2 skipping the imperfection resonance condition. In this way all imperfec-

tion resonances can be avoided provided that the resonance strength is much

smaller than the gap this discontinuity creates.

Clearly as the partial snake strength s increases the gap around the inte-

ger Gγ value increases. It has been proposed [22] that if this gap was wide
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Figure 6.6: Polarization after crossing the 12+νx resonance with fixed vertical
tune and horizontal tune (νz = 8.8 , νx = 8.7). Scanning currents for a
hypothetical skew quadrupole in the 15th lattice position and the 17th skew
quadrupole family fixed at 250 A. The vertical rms emittance for a 10 π mm-
mrad beam was used. The acceleration rate was α = 2.4×10−5, and the snake
strength was set to 5%. (Note the wiggle in the curve is due to an occasional
failure of the MAD program to find the set tunes.)

enough the intrinsic resonances could be “driven” through this gap. That is,

if the vertical betatron tune were close enough to the integer, this gap would

encompass all intrinsic resonances and provide a method to overcome them.

Obviously the ideal solution to the problem of depolarization in the AGS

would be the installation of a full Siberian snake; however there are no available

straight sections in the AGS which could accommodate a full Siberian snake.

A compromise would be the installation of a strong partial snake which would

create a gap in the tune space large enough to place the vertical betatron tune
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Figure 6.7: Polarization after crossing the 36−νx resonance with fixed vertical
tune and horizontal tune (νz = 8.8 , νx = 8.7). Scanning currents for a
hypothetical skew quadrupole in the 15th lattice position and the 17th skew
quadrupole family fixed at 671 A. The vertical rms emittance for a 10 π mm-
mrad beam was used. The acceleration rate was α = 2.4×10−5, and the snake
strength was set to 5%.

inside yet still avoiding beam instability associated with the integer stop-band.

This was recently studied (see Ref. [23]) and is now being actively developed.

6.3.1 Results

The efficacy of a strong partial snake was tested using the existing partial

solenoidal snake in the AGS. The spin rotation induced by the solenoid is

given by

φ = e(1 +G)µ0NI/cp, (6.11)
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Figure 6.8: Polarization after crossing the 36+νx resonance with fixed vertical
tune and horizontal tune (νz = 8.8 , νx = 8.7). Scanning currents for a
hypothetical skew quadrupole in the 15th lattice position and the 17th skew
quadrupole family fixed at 1200 A. The vertical rms emittance of a 10 π mm-
mrad beam was used. The acceleration rate was α = 2.4×10−5, and the snake
strength was set to 5%.

where p is the momentum of the proton beam, µ0 is the permeability of the

vacuum, and NI is the current times the number of turns turns. The effective

snake strength becomes s = φ/π. Since the analyzing power of the AGS

polarimeter and the strength of solenoidal snake both fall off with increasing

energy, we examined the crossing at the lowest intrinsic resonancesGγ = 0+νz.

At this energy the solenoid can generate a 25% snake, however with a stronger

solenoidal field comes stronger coupling. A snake strength of 11.4% was chosen

for this experiment as a compromise between spin tune gap size and enhanced

coupling spin resonances. The horizontal tune was kept at 8.54 while the
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vertical tune was raised to 8.98. At this vertical tune the orbit had to be

carefully corrected to reduce the beam instabilities near the integer stop-band.

The results of the experiment are shown in Fig 6.9. At the top vertical tune

the discrepancy between injection and measured polarization can be attributed

to the remaining coupled spin resonance and the new direction of the spin

closed orbit, which under the influence of the partial snake has shifted 20.52◦

by the 11.4% snake. Of particular interest is the dip in polarization near

νz = 8.97. This is believed to be due to the existence of a second order

snake resonance (l = 2) since the spin tune νs = 0.057 for an 11.4% snake

near Gγ ≈ 9. By Eq. (2.31) a second order snake resonance should exist at

δνz = 0.9715. This snake resonance reduces the available tune space making

the selection of operating tunes even more critical. Furthermore since we are

dealing with an even order snake resonance much care must be take with

vertical closed orbit corrections, since a bad closed orbit will expand the snake

resonance as well as hurt beam stability near the integer stop-band.

There are several advantages to using a strong partial snake. First the

strong partial snake will allow us to avoid all imperfection, weak and strong

intrinsic resonances. Additionally its operation should avoid some of the prob-

lems associated with the operation of the ac dipole which has required constant

monitoring and care, due to slight current fluctuations in the tune quadrupoles

and the general nonlinear response of the net spin-flip. The ac dipole also

causes beam loss due to scrapping at the 0 + νz crossing. If this could be

avoided the overall intensity transfered to RHIC could be improved. Finally

coupled spin resonances could be dealt with by either pushing the horizon-

tal and vertical tunes through the spin tune gap, or a new family of skew
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Figure 6.9: The measured vertical polarization as a function of the vertical
betatron tune for an 11.4% partial snake. The dots are measured polarization,
and the error bars only represent the statistical errors. The dashed line is the
polarization level measured at the end of the LINAC. The solid curve is the
simulation result using both the new DEPOL and a tracking model with two
overlapping resonances. This figure was taken from [23].

quadrupoles could be added to eliminate the coupled spin resonances.

The design of a new super-conducting helical partial snake to replace the

solenoidal snake is currently underway. It is believed that a 20% to 30% partial

snake should be sufficient to overcome intrinsic resonances at all energies. The

helical design will minimize the effective coupling induced by the partial snake.
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Chapter 7

The Configuration of RHIC

RHIC receives polarized protons at Gγ = 46.5 and accelerates them up to

Gγ = 192 during which it crosses many intrinsic and imperfection resonances.

In the RHIC lattice, there are six arcs with 12 FODO cells in each arc. Due to

the anti-symmetric arrangements, the superperiod is P = 3 while the effective

number of dipole cells is M = 27. This configuration places all the intrinsic

resonances at nP ± νz.
To avoid resonances RHIC is equipped with two full Siberian snakes in

each ring (Blue and Yellow rings). They are situated on opposite sides of

each ring and serve to avoid depolarizing resonances by introducing 180◦ spin

rotation without an associated net orbit distortion. The helical dipole snakes

are composed of four separate helical dipoles with a combined total length

of 10.56 m [24]. The outer and inner two magnets are powered on the same

power supply but with opposite polarity. The effect of the snakes is to keep

the spin tune equal to 1/2 during acceleration thus avoiding the intrinsic and
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imperfection resonance condition. However depolarization can occur through

the snake resonance condition.

During the 2002 polarized proton run the AGS typically delivered protons

polarized at 25%. RHIC was able with the help of the snakes to maintain this

polarization during the ramp up to 100 GeV for many of the fills. However on

several occasions the polarization transfer efficiency dropped well below 100%

due to crossing the 1/4 snake resonance or the 3/14 coupled snake resonance.

In RHIC the primary source of coupling comes from rolls in the triplet

quadrupoles at the six interaction regions. In addition the helical dipole snakes

introduce a small longitudinal field and the existence of 5 T-m solenoidal

magnets field at two of the experiments during a store can further contribute

to coupling in RHIC. The solenoidal magnets however are not turned on until

flattop is reached. Much effort has been devoted to compensate for the rolls

in the triplet quadrupoles through a system of local and global corrections

outlined in [20]. These efforts produced some success at injection and flattop.

However, problems during the acceleration ramp persisted since a dynamic

correction technique has yet to be implemented.

7.1 Snake Field Measurement and Calibration

A lot of work has been done predicting the field structure of the newly in-

stalled helical snakes and rotators in RHIC. Analytical[25] [26] [27] [29] and

numerical [28] work has been conducted to generate an appropriate model for

these elements. But up to now actual field measurements taken from the real

magnets have not been analyzed. A comparison of the actual field values with
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current analytical models proved problematic in terms of fitting. In addition

to the problem of modeling the end effects and accounting for the quadrupole

fields, we found a general longitudinal dependence for the multipoles in the

helical basis. Since this longitudinal dependence could not be accounted for in

a neat analytical solution and required resorting to a series solution expansion

we decided that using an available finite element analysis program would be a

more efficient method to generate a solution.

However current finite element analysis programs are designed to solve

Laplace’s equation for cases with a scalar potential boundary condition. Since

we possessed multipole data appropriate for the generation of Bρ field compo-

nents along a 3.1 cm radius, we needed to develop a magnetic scalar potential

along a cylindrical surface in order to use the software to solve the interior field

problem. Considering that the Bρ component must satisfy Laplace’s equation

separately,

∇2Bρ = 0. (7.1)

We can use TOSCA [30] to solve this version of Laplace’s equation thus giving

Bρ everywhere interior to our boundary conditions (ρ0 = 3.1 cm ). Using this

Bρ we can evaluate the real magnetic scalar potential ΦM using,

Φ(ρ0)M =

∫ ρ0

0

Bρdρ+ Φ(0)M . (7.2)

Finally using the derived values for ΦM we can again use TOSCA [30] as it

was intended, generating a useable full field model contained in the OPERA-

TOSCA [30] operating environment.
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Since we are equipped to solve for fields internal to our known boundary

conditions, we are restricted to considering transverse particle motion of ρ <

3.1 cm. Given a beam pipe with an internal radius of 4.5 cm it would be better

if we could account for displacements up to at least 4.1 cm. To accomplish

this we linearly extrapolated the straight magnetic field formula for Bρ

Bρ = B0

∞∑
n=0

(
ρ

ρ0

)n

[an cos ((n+ 1)θ) + bn sin ((n+ 1)θ)] (7.3)

by simply using existing multipole values and evaluating Bρ at a 4.1cm radius.

From Fig. 7.1 it seems clear that using a 4.1 cm radius for the boundary
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Figure 7.1: Difference in x and y (y is the vertical direction and x horizon-
tal) trajectories for Fields evaluated with boundary conditions at 3.1 cm and
4.1 c.m.

conditions will give reasonable orbit results.

Using SNIG [31] we tracked 100 GeV protons through the field map of
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Figure 7.2: Bx , By and Bz fields evaluated along 100 GeV particle path.

a single snake with the largest measured deviation (HRD101). Results were

consistent with previous predictions; however construction errors lead to exit-

ing orbit displacements of -0.289 mm and -0.489 mm in the x and y direction

respectively. In addition the particle picked up angular kicks of -0.46 mrad

and -1.21 mrad in x′ and y′. Here we now take x to be horizontal direction, y

to be vertical and z to be the longitudinal direction for the rest of this chapter.

A quick evaluation of the orbit paths for particles entering close to the axis
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Figure 7.3: ∆Bx , ∆By and δBz fields evaluated along 100 GeV particle path
comparing ρ = 3.1 cm to a 4.1 cm

with a small transverse momentum yielded the following transfer matrix

M =




0.9964174 10.980413 0.0014789 0.0011432

−0.000656 0.9985205 0.0002366 0.0000774

0.0001979 0.0126185 0.9883464 10.924713

0.0002217 0.0038101 −0.002115 0.9880669



. (7.4)

The determinant for this matrix is |M | = 1.002 so for longterm tracking it

should be symplectified. From this matrix it is clear that the snakes do induce

some coupling. The contribution of this coupling to spin resonances has been

evaluated [32] showing a strength on the order of coupling caused by the

operation of the solenoidal field in both the PHENIX and STAR detectors yet

much less that that caused by the triplet quadrupole rolls at each interaction
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Figure 7.4: X and Y trajectories through full snake.

region.

Considering the behavior of spin through the snake we found our results

matched fairly well with previous predictions. With the outer two magnets set

at 102 A and the inner two at 329 A the particle achieved a complete spin flip.

We now seek to study the spin response of the input currents to the inner and

outer helical pairs. It is convenient to parameterize the effects of the snake on

the spin by using the angles µ and φ. As you can see in Fig. 7.6, φ represents

the angle between the longitudinal axis in the horizontal plane and the axis

of rotation. µ represents the magnitude of the spin rotation about this “snake

axis”. From the values of µ and φ for each snake it is possible to evaluate the

total spin tune νs of the machine. It is a well known result that νs can be
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Sy = 1 polarization

given by,

cos νsπ = cos
µ2

2
cos
µ1

2
cosGγπ − sin µ2

2
sin
µ1

2
cos(φ2 − φ1). (7.5)

In order to keep the spin precession energy independent and thus avoid spin

resonances it is necessary to keep our spin tune νs = 0.5. From Eq. (7.5) it is

easy to see that one way this can be accomplished is if the right side is made

to vanish. Currently in RHIC the snakes have been configured to achieve this

with φ1 = −φ2 = π/4 and µ1 = µ2 = π.

One of the major challenges has been identifying those settings which can

achieve µ = ±π/4 and φ = π, the desired snake configuration.
To simplify our predictions we generated µ and φ results over a range of
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input currents and using these constructed a fourth order polynomial fit which

was implemented in a simple graphical TCL program. In Figs. 7.7 and 7.8 the

residuals from the fit and the actual µ and φ values are shown for the snake

HRD101(1st snake in blue ring) at γ = 107.0922 . Since most of our data

points were collected in the region of ±(300−330) A for the inner current and
±(90−120) A for the outer currents our largest residual values naturally occur
well outside this range and reach a maximum of ±5◦ . Within the operating
and detuning range used for the spin flipper commissioning, the deviation is

down to less than ±2◦. To achieve the desired µ = 180◦ and φ = ±45◦ values,
the RHIC snakes were all powered to 325 A for the inner helices and 100 A

on the outer helices. These figures were based on the HRD101 blue snake
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Figure 7.7: µ residuals for snake HRD101 at γ = 107.0922 versus inner current.

multipole measurements. Since ramping the beam energy from γ = 25.9364

to γ = 107.0922 only yielded a 0.01 change in spin tune, the current settings

were kept fixed throughout the acceleration ramp.

The process of commissioning the RHIC spin flipper as well provides an

estimate of the spin tune. Commissioning of the spin flipper in RHIC is de-

tailed by Bai et,al [33]. Briefly however the driving frequency of the ac dipole

was swept through a range where the spin tune was believed to reside. Thus if

a spin flip was observed then it was known that the spin tune must lie within

the range of frequencies swept by the ac dipole.

Results showed that a partial spin flip (66%) was obtained in the Blue ring

when the AC dipole was swept over a driving frequency from 0.47 to 0.49 and
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Figure 7.8: φ residuals for snake HRD101 at γ = 107.0922 versus inner current.

the snake was detuned to a predicted value of νs = 0.48. These results indicate

several possible explanations. Either the spin tune was not exactly 0.48 but

on the edge of the 0.47 to 0.49 range or the spin tune spread exceeded ±0.01.
During this experiment it was noticed that partial spin flipping was ob-

served in the Yellow ring. This was despite the fact that the currents pow-

ering the snake were fixed at inner current = 325 A and outer current =

100 A, which by our calculations based on the HRD101 Blue snake should

have yielded a spin tune of 0.5. Clearly our spin tune distribution must have

partially overlapped with the tunes in the range of 0.47 to 0.49.

If we consider in detail the field strengths of the HRD102 Yellow snake

however we find that at the 325 A and 100 A current settings will yield a
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µ = 179.956475 and φ = −44.0853423 at γ = 107.0922. This difference of

about 1◦ can lead to ±0.01 change in the spin tune which could account for
the spin detuning observed in the Yellow ring.

In addition to using the spin flipper it is possible to use snake resonance

theory to help estimate the spin tune using the snake resonance condition [7]

δνy =
νs ± k
l
. (7.6)

Here l represents the snake resonance order and δνy the fractional part of

the vertical betatron tune. In the betatron tune space used during the RHIC

acceleration ramp tracking indicates that there should be two observable snake

resonances, the strongest of which occurs at a betatron tune νz = 0.25 [24].

Following from Eq. (7.6) the exact location of this resonance in betatron tune

space should be dependent on the exact spin tune achieved by the snakes.

In Figs. 7.9-7.10 we can see graphs of the maximum vertical betatron tune

during the acceleration ramp versus polarization transfer efficiency. Clearly in

both the blue and yellow rings this snake resonance at νz = 0.25 was observed

whenever the tune crossed the 0.245 threshold setting a lower bound of 0.49

spin tune for both rings.
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Polarization transfer efficiency (Pf/Pi).
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Chapter 8

Observation of Higher Order

Snake Resonances in RHIC

The fractional betatron tune space, in which RHIC was operated during the

2002 polarized proton run ranged from 0.20 to 0.25 with the horizontal tune

typically between 0.2 to 0.225 and the vertical between 0.225 to 0.25. Com-

parisons with the snake resonance graph in Fig. 8.1 shows possible sources

of depolarization during the RHIC ramp. Clearly there are three snake reso-

nance locations in betatron tune space that we must worry about: 1/4, 3/16

and 3/14 snake resonances. All snake resonances are seen to split into two

peaks.

To rule out the effect of higher order resonances and establish the bound-

aries for each snake resonance in tune space we calculated the imperfection,

intrinsic and coupled spin resonances using DEPOL. The results for the en-

ergy range of the RHIC ramp is shown in Fig. 8.2. From the intrinsic and
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tion through a strong intrinsic resonance of 0.5 and a moderate imperfection
resonance of 0.05 shown as a function of the vertical betatron tune. Figure
taken from [24].

coupled spin resonance strength calculation, the maximum resonance strength

is εint < 0.15. This precludes the effect of any higher order snake resonances

[22]. From the imperfection calculation the maximum imperfection strength

εimp < 0.2 places the maximum tune splitting. Eq. (2.31) places the maximal

incursion of 1/4 snake resonances at 0.2424 and for 3/16 at 0.1894. Given

the operating tune space we can now rule out the effect of the 3/16 snake

resonance.

Thus only the 1/4 and 3/14 snake resonances could have been the source

of depolarization during the RHIC ramp. Since the vertical tune during most
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Figure 8.2: Calculated imperfection, intrinsic, and coupled spin resonance
strength for RHIC zrms = 2.2 mm, using vertical and horizontal emittance of
10π mm-mrad.
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of the runs was kept above 29.22, the 3/14 snake resonance from the vertical

betatron motion could not have caused depolarization. However, the vertical

tune did approach 1/4 on several occasions and the horizontal tune did cross

3/14 on many ramps. An example of the 3/14 coupled snake resonance crossing

can be clearly seen from the FFT tune signal shown in Fig. 8.3.

Figure 8.3: Snapshot of the FFT spectrum from the RHIC horizontal tune
meter in the Yellow ring. In this ramp the polarization preservation efficiency
Pf/Pi dropped to 20%. This snap shot was taken during crossing the second
strong resonance location along the RHIC ramp. The double peak is clear
evidence of strong coupling, where the horizontal tune (lower peak) is clearly
overlapping the 3/14 snake resonance.

Since coupling was evidently significant in RHIC and the horizontal and

vertical tunes were run in close proximity, we investigated the significance of

the coupled 3/14 snake resonance on polarization. We proceeded by consider-

ing the vertical and horizontal tunes at three strong resonance locations along
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the RHIC ramp. From these three locations we then selected data for those

tunes with both minimum |3/14− νx| value and |νx − νz| < 0.02. From this

data we fit a simple Froissart-Stora type of function,

< Pf/Pi >= 2e
−4πq − 1. (8.1)

Here q served as a type of resonance strength and was made dependent on

both tune separation and distance to the snake resonances,

q =
C1

|νx − νz| +
C2

|3/14− νx| + C0. (8.2)

Linearizing and fitting this equation we found C1 = 2.92× 10−4 , C2 = 5.99×
10−6 and C0 = −0.017 for the blue ring and C1 = 2.07×10−4, C2 = 1.47×10−5

and C0 = −0.0144 for the yellow ring. The R2 value of the fit for the blue

ring is 0.71 and for the yellow ring is 0.74 . Graphs of the 3/14 coupled

snake resonance and 1/4 even snake resonance are shown in Fig. 8.4. We can

use the resonance widths in Fig. 8.4 to estimate the imperfection resonance

strength which perturbed the spin tune at 3/14. For Yellow we found it to be

≈ 0.13 and for blue ≈ 0.095 which means our DEPOL calculations probably

overestimated the imperfection resonance strength.

Finally spin tracking results in the Blue ring using the program SPINK

[34] and including rolls in the triplet quadrupoles (without correction) show

clearly in Fig. 8.5 the onset of the coupled snake resonances as the horizontal

tune crosses the 3/14 snake resonance location. What is of interest here is why

this resonance fits the Froissart-Stora type function so well. A nice analyti-
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Figure 8.4: |δνz − 1/4| and |δνx − 3/14| versus polarization preservation effi-
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tered between 1.0 and 0.4. This is because for each RHIC fill other machine
parameters were fluctuating.

cal prediction for the magnitude of depolarization during a snake resonance

crossing does not exist. However the success of this simple model leads one to

speculate that perhaps a simple model could be used to at least approximate

their behavior. Clearly more theoretical work should be pursued in this vein.

Depolarization due to the 1/4 snake resonance was much easier to show

since it is such a strong resonance operating independent of coupling. The left

two graphs in Fig. 8.4 clearly show the onset of this snake resonance. As in

78



160 170 180 190
Gγ

−1

−0.8

−0.6

−0.4

δυX=0.2153, δυZ=0.2379

−1

−0.8

−0.6

−0.4

δυX=0.2147, δυZ=0.2385

−1

−0.8

−0.6

−0.4

δυX=0.2129, δυZ=0.2402

Figure 8.5: Spin Tracking results for strongly coupled Blue ring with an emit-
tance of 25 mm-mrad and zrms = 0.6 mm. The three graphs show Polarization
versus Gγ with the fractional part of the horizontal betatron tunes near 3/14.
Figure obtained from [35].

the 3/14 case we can use these graphs to estimate the imperfection resonance

strength. For both rings we find the imperfection resonance to be about 0.16.

Both estimates from the 3/14 and 1/4 snake resonance appear consistent with

our DEPOL calculated resonance strength.
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Chapter 9

Conclusion

The polarization transfer efficiency of the AGS presents the most clear chal-

lenge to achieving higher levels of polarization at top energy in RHIC. The

problems in the AGS are centered around the remaining weak intrinsic reso-

nances and the coupled spin resonances. Our studies have shown that several

viable solutions exist.

For the weak intrinsic resonances one solution proposed in the past [2]

has been reconsidered, namely the addition of a new quadrupole family in the

15th position of each superperiod to cancel the weak intrinsic resonances. This

solution has been shown to work theoretically but has yet to be tested in the

AGS.

Another solution for the problem of weak intrinsic resonances is the use

of a strong partial snake. During the 2002 polarized proton run, for the first

time, an 11.4% partial snake was used to effectively over come the strong

intrinsic resonance at 0 + νz. Also for the first time partial snake resonances
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were observed confirming previous theoretical predictions [22]. In this case the

theory has been well tested; however much care must be taken in its design

and execution. Of critical concern is control over the closed orbit errors for

three major reasons. First since correction of the intrinsic resonance requires

operating the vertical machine tune close to an integer, the existence of orbit

errors will make beam stability difficult. Second the existence of an even order

snake resonance in this tune space means that the available tune space will

be severely limited by the enhancement and splitting of the even order snake

resonances in the presences of closed orbit errors. Third since it is necessary

to build the partial snake in such a limited space, the field strengths necessary

to generate the targeted 20% - 30% partial snake will inevitably introduce

additional closed orbit errors in the ring. How these bumps are managed is of

great importance.

For the coupled spin resonances it was first necessary to develop the means

to better assess their strength and behavior. This was accomplished through

improvements to the existing DEPOL algorithm in order to account for cou-

pling. After testing the new DEPOL algorithm during the 2002 polarized

proton run we used it to search for a solution to the problem coupled spin

resonances. One solution entailed the installation of six skew quadrupoles

in the 15th straight section in every other super-period. Using these skew

quadrupoles together with the existing skew quadrupole in the 17th straight

section our theoretical calculations showed that the remaining coupled spin

resonances could be effectively suppressed. This was achieved not through the

traditional technique of global or local machine decoupling but rather through

a spin matching mechanism. Using skew quadrupoles in this way to suppress
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a coupled spin resonance has been demonstrated for first time here.

Given that there is a strong impetus to develop and install a new stronger

partial snake in the AGS, questions about how to handle the coupled spin

resonance remains. Although a helical snake should minimize coupling, still

longitudinal fields will still exist especially since we are working with much

higher overall fields. In addition, rolls in the main magnet will ensure that

coupled spin resonances will still remain an issue. One possible solution is to

push the coupled snake resonances through the spin tune gap as well. This

solution still needs a more thorough exploration to determine its feasibility.

Another solution is the installation of a family of six skew quadrupoles since

it has been shown how to effectively suppress these resonances through their

careful use.

The polarization transfer efficiency of RHIC fared much better than the

AGS’s, due to the successful operation of the two Siberian snakes in each

ring. By using measured field data taken from a fixed surface we were able

to extrapolate a full field map. A novel technique was employed to enable

the OPERA-TOSCA finite element analysis software to generate a full 3D

field map. Using these maps we could then establish the operating currents

necessary to achieve a spin tune of 1/2. These calculations were tested in a

limited way using the ac dipole and the location of the 1/4 snake resonance

to determine the bounds of our predictions.

Despite the successful operation of the snakes, the ability of RHIC to

achieve a high polarization transfer efficiency varied. Thus it was vital that

an understanding of those factors which were critical to polarization be un-

derstood. In the process of trying to establish these causes we found for the
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first time evidence for the existence of higher snake resonances in RHIC. These

snake resonances consisted of an odd order coupled snake resonances at hor-

izontal tune of 3/14 and a even order snake resonances at 1/4. Theoretical

calculations had predicted the existence of the coupled snake resonance at

3/14, yet it was not initially anticipated that the level of coupling in RHIC

would be so high as to make it an issue. Unlike 3/14 coupled snake resonance,

the 1/4 snake resonance was anticipated but its incursion into the operating

tune space was greater due to the existence of large closed orbit errors. The

behavior of both of these resonances seemed to support the current theory of

snake resonances. An estimate of the imperfection resonance strength based

on theory was in good agreement with previously calculations.

Future polarized proton runs in RHIC should pay much attention to closed

orbit correction so that the impingement of the 1/4 snake resonance can be

lessened. Additionally the impact of the 3/14 coupled snake resonance needs

to be taken into account. This places a premium on the work of decoupling

as well as tune control along the ramp, in order to avoid the effect of the 3/14

coupled snake resonance.
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Appendix A

Derivation of Decoupling

Matrices

Given a Coupled Matrix,

M =


 A B

C D


 , (A.1)

where A,B,C,D and Q are all 2×2 submatrices of sympletic matrix M. There
may exists a 4× 4 symplectic matrix,

R =
1√

1 + |Q|


 I Q

−Q I


 (A.2)

which can transform M to an uncoupled basis,

M = RUR. (A.3)
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Here the over-line indicates a sympletic conjugate defined as R = −SRTS and

S is defined as,

S =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



. (A.4)

In this case the simplectic conjugate of R is also its inverse. U is the block

diagonal matrix,

U =


 E 0

0 F


 . (A.5)

From Eq. (A.3) we can see that the elements of M become,

A =
(E +QFQ)

1 + |Q| B =
EQ−QF )
1 + |Q|

C =
(QE − FQ)
1 + |Q| D =

(QEQ+ F )

1 + |Q| . (A.6)

If we then add A+ A and recall that this equals ItrA we can obtain,

ItrA =
(E + E +QFQ+QFQ)

1 + |Q|
=

(ItrE +Q(trF )Q)

1 + |Q|

trA =
(trE + |Q|trF )

1 + |Q| . (A.7)
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Likewise we can add D +D to obtain,

ItrD =
(F + F +QEQ+QEQ)

1 + |Q|
=

(ItrF +Q(trE)Q)

1 + |Q|

trD =
(trF + |Q|trE)

1 + |Q| . (A.8)

Subtracting Eq. (A.8) from (A.7) yields,

tr(A−D) = 1− |Q|
1 + |Q|tr(E − F ). (A.9)

Adding B + C we get,

B + C =
|Q|tr(E − F )
1 + |Q| . (A.10)

Combining Eq. (A.9) and (A.10) gives

Q =
(B + C)(1− |Q|)
Tr(A−D) . (A.11)

Multiplying both sides by the simplectic conjugate we can solve for |Q|,

|Q| =
|B + C|(1− |Q|)2
(tr(A−D))2

|Q| = 1 +

tr(A−D)
(

tr(A−D)
2

±
√

(tr(A−D))2

4
+ |B + C|

)
|B + C| . (A.12)
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Substituting back into Eq. (A.11) finally gives Q in terms of the elements of

the uncoupled matrix,

Q = −
(
tr(A−D)

2
±
√

|B + C|+ (tr(A−D))2
4

)
B + C

|B + C| . (A.13)
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Appendix B

Method of Phase Factoring

If we consider the elements in Eq. (3.16) and (3.17) we can see that a common

piece takes on the following form,

(z′2 − iKρz2)eiKθ2 − (z′1 − iKρz1)eiKθ1

kz − (Kρ)2 . (B.1)

Expanding each factor we find,

z1e
iKθ1 = eiKθ1 [R3,1u1 +R3,2u

′
1 +R3,3v1 +R3,4v

′
1] , (B.2)

eiKθ1u1 =
√
βu[L]εu cos [−(µu[L] + µu[Lmax]n)2π] e

iKθ1

=

√
βu[L]εu
2

(
exp(−i2πµu[L])e−i(2πµu [Lmax]n−Kθ1)

+exp(i2πµu[L])e
i(2πµu[Lmax]n+Kθ1)

)
, (B.3)
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eiKθ1u′1 =
√

εu
βu[L]

[−αu[L] cos [−(µu[L] + µu[Lmax]n)2π] +

sin [−(µu[L] + µu[Lmax]n)2π]] e
iKθ1

=

√
εu
βu[L]

(−(αu[L] + i) exp(−i2πµu[L])e−i(2πµu [Lmax]n−Kθ1)

−(αu[L]− i) exp(i2πµu[L])ei(2πµu [Lmax]n+Kθ1)
)
. (B.4)

Here L indicates the lattice indexed position, Lmax the final index and n the

index indicating the number of passes through the lattice. Ri,j are the elements

of the decoupling R matrix and u , v are the coordinates in the uncoupled

basis. The eiKθ1v1 and e
iKθ1v′1 terms have the same form as Eqs. (B.3) and

(B.4) replacing u with v. Clearly all the terms in Eq. (B.1), when summed

over the lattice N number of times can have the following four terms factored

out,

Eu(N)± =

N∑
n=0

ei2πn(K±µu[Lmax])

= ±eiNπ(K±µu[Lmax]) sin (π(N + 1)(K ± µu[Lmax]))

sin (π(K ± µu[Lmax]))

Ev(N)± =

N∑
n=0

ei2πn(K±µv [Lmax])

= ±eiNπ(K±µv [Lmax]) sin (π(N + 1)(K ± µv[Lmax]))

sin (π(K ± µv[Lmax]))
(B.5)

Since µv[Lmax] = νv and µu[Lmax] = νu Eq.(B.5) reduces to Eq.(3.19). Thus

a sum over N passes of the lattice can be reduced to a sum just over L if the

appropriate terms are multiplied by their enhancement factor.
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Appendix C

Transformation of Emittances

to Coupled Basis

In General we can define a sigma matrix as the variance of the beam’s distri-

bution:

σxz =




< x2 > < xx′ > < xz > < xz′ >

< x′x > < x′2 > < x′z > < x′z′ >

< zx > < zx′ > < z2 > < zz′ >

< z′x > < z′x′ > < z′z > < z′2 >



. (C.1)

In the uncoupled u and v basis we can the sigma matrix in terms of its Twiss

parameters:

σu−v =




εuβu −εuαu 0 0

−εuαu εuγu 0 0

0 0 εvβv −εvαv
0 0 −εvαv εvγv



. (C.2)
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If we transform this to the coupled x-z basis, then

σxz = Rσu−vR. (C.3)

We can obtain expressions for < x2 > and < z2 > in terms of the Twiss

parameters in the uncoupled basis and the rotation matrix elements:

< x2 >= εu
[
R1,1R1,1βu −R1,1R1,2αu −R2,1R1,1βu +R2,1R1,2γu

]
+εv

[
R3,1R1,3βv − R3,1R1,4αv −R4,1R1,3αv +R4,1R1,4γv

]
, (C.4)

< z2 >= εu
[
R1,3R3,1βu − R1,3R3,2αu −R2,3R3,1βu +R2,3R3,2γu

]
+εv

[
R3,3R3,3βv − R3,3R3,4αv − R4,3R3,3αv +R4,3R3,4γv

]
. (C.5)

Since < x2 >= σx and < z
2 >= σz are what the profile detectors measures it

is easy to solve for εu and εv.

91



Bibliography

[1] E.D. Courant and R.D. Ruth, The Acceleration of Polarized Protons in

Circular Accelerators, BNL 51270 1980.

[2] A.Lehrach et al.,Suppressing intrinsic spin harmonics at the AGS, C-

A/AP#11 (2000).

[3] Ya.S. Derbenev and A.M. Kondratenko, Zh. Eksp. Teor. Fiz. 62, 430

(1972) [Sov. Phys. JETP 35, 230 (1972)]; Ya.S. Derbenev et. al., Part.

Accel. 8, 115 (1978).

[4] A.D.Krish et al., Phys. Rev. Lett. 63, 1137 (1989)

[5] W.W.MacKay et al. Commissioning and future Plans for polarized pro-

tons in RHIC Proc. of PAC01, Chicago, 24.

[6] T.Roser et al. Accelerating and colliding polarized protons in RHIC with

Siberian Snakes Proc. of EPAC02, Paris, 209.

[7] S.Y.Lee and S. Tepikian, Phys. Rev. Lett. 56, 1635 (1986); S. Tepikian,

Ph.D. thesis, State University of New York at Stony Brook, 1986 (unpub-

lished)

92



[8] S.Y.Lee, (1992) Phys.Rev.E 47, N5.

[9] M. Froissart, and R.Stora, Nucl. Inst. Meth. 7, 297 (1960)

[10] L.C. Teng, Concerning n-Dimensional Coupled Motion. FN 229, FNAL,

(1971).

[11] H.Grote and F.C.Iselin Methodical Accelerator Design Program Version

8.23 CERN/SL/90-13(AP).

[12] A. Zelenski, et al., Proceedings of the 9th International Conference on

Ion Sources, Rev. Sci.Inst., Vol. 73 , No.2, p.888(2002)

[13] H.Huang et al., Phys. Rev. Lett. 73, 2982 (1994).

[14] M.Bai et al, Phys. Rev E56, 6002 (1997).

[15] H.Spinka et al., Nucl. Instrum. Methods 211, 239 (1983).

[16] H.Huang personal communication.

[17] H. Huang, Ph. D Thesis, Indiana University (1995)

[18] Chart obtained from Kevin Brown.

[19] C.J.Gardner, et.al Observation and Measurement of Linear Coupling in

the AGS AGS Studies Report, N224, 1987

[20] F.Pilat, et.al Coupling measurement and correction during RHIC run

2001 and development for 2003, C-A/AP 77, July 2002

93



[21] T.Roser, Proc.Workshop on Siberian Snakes and Depolarizing Techniques

(1989) p.144.

[22] S.Y.Lee ,Spin Dynamics and Snakes in Synchrotrons, World Scientific p.

25-42, 93, 1997

[23] H.Huang et al, Overcomming an Intrinsic Depolarizing Resonance with a

Partial Snake at the Brookhaven AGS, (2002) to be published.

[24] I.Alekseev, et. al Design Manual Polarized Proton Collider at RHIC July

1998, pages 35-48

[25] E.D. Courant, Orbit Matrices for Helical Snakes AGS/RHIC/Spin Note,

BNL No. 4 (1996)

[26] E.D. Courant, Hybrid Helical Snakes and Rotators for RHIC,

AGS/RHIC/Spin Note, BNL No. 10 (1996)

[27] M.J.Syphers, Closed Orbit Errors from Helical Dipole Magnets,

AGS/RHIC/Spin Note, BNL No. 16 (1996)

[28] K.Hatanaka, T.Katayama,T.Tominaka, Maxwellian Field Expansion of

Helical Magnet, IEEE 3416 (1998).

[29] W.Fischer, M. Okamura, Parameterization and measurements of Helical

Magnetic Fields, IEEE 3341 (1998).

[30] TOSCA and OPERA commercial software version 8.0.

[31] A.U.Luccio, Trends in Collider Spin Physics pp 244 World Scientific

(1997)

94



[32] V.Ranjbar et al., Mapping out the full spin resonance structure of RHIC

Proc. of PAC01, Chicago, 3177.

[33] M.Bai, et.al RHIC Spin Flipper Commissioning Proc. of EPAC02, Paris,

299.

[34] A.U.Luccio, Field Map Generated Matrices for Spin Tracking, RIKEN-

AF-NP-235 (1996)

[35] Chart obtained from Alfredo Luccio.

95


