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1 Introduction

The aim of this paper is to give a notation for the magnetic field error coef-
ficients of helical dipoles. These coefficients shall be the magnetic multipole
coefficients of ordinary dipoles when the helical wave length tends to infinity.
Such a notation is different from Ref. [1].

For comparison, the magnetic field error notation for ordinary dipoles will
be presented first. The notation for helical dipoles is given thereafter.

2 Magnetic Field Errors of Ordinary Dipoles

In a current free region in vacuum where the electrical field E is constant, the
magnetic field B can be derived from a scalar potential v as

B = —Vy. (1)

We will use a Cartesian coordinate system (z,y,z) and a cylindrical coordi-
nate system (r,6,z). Here, z denotes the horizontal, y the vertical and z the
longitudinal direction. Furthermore we have

r=17r cosf, )
(2)

y=r sinf.

We consider a dipole of infinite length, thus neglecting fringe fields. The sym-
metry condition of such an element reads

P(r,0,z) = YP(r, 0,z + Az) (3)
where Az is arbitrary. Therefore, the potential ¢ is independent of z:

¥(r,0,2) = (r,0). (4)



Having a main field By in y-direction, the solution of the Laplace equation
Ay = 0 can be written in cylindrical coordinates as

P(r,0) = —Bo{rsinﬁ +
()

o rn+1
+ Z ni 1? [an cos ((n + 1)8) + by sin ((n + 1)9)]}

n=0

The term —Bgrsinfé gives the main field and the coefficients a, and b, de-
note deviations from the main field. The b, are called “normal” and the a,
“skew” multipole coefficients. Here, the subscript “0” denotes a dipole, “1” a
quadrupole etc. 7g is a reference radius. For the RHIC dipoles rg = grcoil 18
used with r.,;; = 40 mm.

From equations (1) and (5) the magnetic field can be obtained in cylindrical
coordinates. We have

B, = By {sinﬁ + Z (%) [an cos ((n+ 1)0) + by sin ((n + 1)9)]} ,

By = By {COSH + Z (:—0) [by cos ((n+1)0) — apsin ((n + 1)9)]} ;(6)

B, =0.

The Cartesian components of B can be written as

B — B, {i <_) [an cos(nf) + by sin(ne)]} 7

r
n=0 0

B, = By {1 iy (—) [b. cos(nf) — a, sin<ne>]} ,
ML

which can also be expressed as

By +iB; = By

1+§:(bn+ian) <Ijoly>n] . (8)

n=0

Note that the European notation (see for example Ref. [2]) differs from the
American one presented here. The transformation is

bn(American) = by 41 (Furopean), (9)

an (American) = —a, 41 (Furopean). (10)



3 Magnetic Field Errors of Helical Dipoles

We consider again a magnet of infinite length, thus neglecting fringe fields. The
symmetry condition for a helical dipole 1s

P(r,0,z) = (r,0 — kAz, z + Az), (11)

where Az is arbitrary. In other words, 8 — kz = const. k = 27/\ is the wave
number and A the wave length of the helix. & shall have the positive sign for
right-handed and the negative sign for left-handed helices. Introducing the new
variable

§=0—kz, (12)

the symmetry condition (11) leads to a potential ) which is only dependent on
r and 6:

W(r, 0, z) = P(r,6). (13)

The tilde shall remind the reader of the fact that 6 in a helix is similar to 6 in
a ordinary dipole. Using (7, ) as coordinates and having a transverse helical
main Field By a solution of the Laplace equation Ay = 0 is (cf. Eq. (5) and
Ref. [1])

U(r,0) = —BO{%Il(kr) sinf +

N i 27t (n 1) 1
(n+1)n+2 plgntl

n=0

X {&n cos((n 4 1)0) + by sin((n + 1)5)} }

g ((n + Dkr) x (14)

where I, are modified Bessel functions. Similar to the ordinary dipole case,
the term —BO%h(kr) sin yields the main field and the coefficients Zn, a, the
deviations thereof. Here, the 5n are called “normal” and the @, “skew” helical
multipole coefficients (with respect to the direction of the main field By). The
subscript “0” denotes a helical dipole, the subscript “1” a helical quadrupole
etc. rg is again a reference radius.

The factors in (14) are chosen in such a way as to obtain the potential (5)
when the helical wave length tends to infinity. In this case & — 0, § — 0 and
the Bessel function can be approximated by (cf. Ref. [3])

Q@%T;. (15)



Now, the magnetic field can be computed as (cf. Ref. [1])

B, = 30{211(1“1) sin 6 +

2" (1)1
PR

n=0

X [an cos((n + l)é) +b, sin((n + 1)5)} },

r 1)k
(n+1)n+1 Tgkn n+1((n+ ) T‘) X

B, = —BO{2I1(kr) cosf +

2 (n 4 1)1
+Z (n+ 1)+l rok

n=0

X [?}n cos((n + 1)5) — dp sin((n + 1)5)} }7

—Ing1((n+ 1)kr) x

where I/ denotes the derivative with respect to the argument of the Bessel
function.

Since the Bessel function is nonlinear, the magnetic field of a helical dipole
is nonlinear too, even the main field given by By. Close to the magnet axis we
have » — 0 and the field can be approximated by

B; = —Bgsin(kz),
By = By cos(kz), (17)
B, = —Bgk [z cos(kz) + ysin(kz)],

i.e. even close to the magnet axis there is a longitudinal field component that
will lead to coupling.
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