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Abstract of the Dissertation

Linear Beam Dynamics
and
Ampere Class Superconducting RF Cavities

@QRHIC
by
Rama R. Calaga
Doctor of Philosophy
in
Physics and Astronomy
State University of New York at Stony Brook

2006

The Relativistic Heavy Ion Collider (RHIC) is a hadron collider
designed to collide a range of ions from protons to gold. RHIC op-
erations began in 2000 and has successfully completed five physics
runs with several species including gold, deuteron, copper, and po-
larized protons. Linear optics and coupling are fundamental issues
affecting the collider performance. Measurement and correction of
optics and coupling are important to maximize the luminosity and
sustain stable operation. A numerical approach, first developed at
SLAC, was implemented to measure linear optics from coherent be-
tatron oscillations generated by ac dipoles and recorded at multiple
beam position monitors (BPMs) distributed around the collider.
The approach is extended to a fully coupled 2D case and equiva-
lence relationships between Hamiltonian and matrix formalisms are

il



derived. Detailed measurements of the transverse coupling terms
are carried out at RHIC and correction strategies are applied to
compensate coupling both locally and globally. A statistical ap-
proach to determine BPM reliability and performance over the past
three runs and future improvements also discussed.

Aiming at a ten-fold increase in the average heavy-ion luminos-
ity, electron cooling is the enabling technology for the next luminos-
ity upgrade (RHIC II). Cooling gold ion beams at 100 GeV /nucleon
requires an electron beam energy of approximately 54 MeV and a
high average current in the range of 50-200 mA. All existing e~
coolers are based on low energy DC accelerators. The only viable
option to generate high current, high energy, low emittance CW
electron beam is through a superconducting energy-recovery linac
(SC-ERL). In this option, an electron beam from a superconduct-
ing injector gun is accelerated using a high gradient (~ 20 MV /m)
superconducting RF (SRF) cavity. The electrons are returned back
to the cavity with a 180° phase shift to recover the energy back
into the cavity before being dumped. A design and development
of a half-cell electron gun and a five-cell SRF linac cavity are pre-
sented. Several RF and beam dynamics issues ultimately resulting
in an optimum cavity design are discussed in detail.
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