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Chapter 1

Introduction

1.1 The Relativistic Heavy Ion Collider, RHIC

RHIC consists of two six-fold symmetric superconducting rings with a cir-
cumference of 3.833 km. The two rings (blue and yellow) consist of six arcs
intersecting at six interaction regions (IRs) and provide collisions to 2-4 con-
current experiments. The main goal of RHIC is to provide collisions at energies
up to 100 GeV/u per beam for heavy ions (197Au79). The accelerator is also
designed for colliding lighter ions all the way down to protons (250 GeV),
including polarized protons [1, 2]. RHIC currently offers a unique feature to
collide different ion species, for example deuteron-gold collisions in 2002. A
sketch of the BNL accelerator complex, showing the RHIC injectors, beam-
lines, and location of the interaction regions is shown in Fig 1.1.

An important figure of merit for colliders is luminosity which defines the
number of interactions produced per unit cross section given by the convolution
integral [3]

L =

∫

A

N1ρ1(x, y)N2ρ2(x, y) da (1.1)

where N1,2 are the number of particles per beam, and ρ1,2(x, y) are the trans-
verse particle distributions 1. For Gaussian beams with equal beam sizes,
Eq. 1.1 becomes [5]

L = n
frevN1N2

4πσ∗
xσ

∗
y

(1.2)

where n is the number of bunches, frev is the revolution frequency, and σ∗

x,y

are the RMS widths of the Gaussian beam. For experiments the integrated

1Note that this integral holds for head on collision and short bunches. For
bunches with σz < β∗, a luminosity reduction due to hourglass effect [4] is non-
negligible like in p-p collisions at RHIC.
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Figure 1.1: The hadron collider complex at Brookhaven National Laboratory.
The path of a Au ion can be traced from its creation at the Tandem until its
injection into RHIC. The polarized protons are injected from the LINAC into
the booster ring, AGS, and finally into RHIC.

luminosity is a better figure of merit than the instantaneous luminosity given in
Eq. 1.2. RHIC was commissioned in 1999 and has successfully completed five
physics runs with heavy-ions and polarized protons. Table 1.1 shows design,
achieved, and upgrade machine parameters. Fig. 1.2 shows an evolution of
the nucleon-pair luminosity (A1A2L) indicative of the length of the runs as
delivered to the PHENIX experiment.

Future luminosity upgrades involve electron cooling of the ion beams which
is discussed in Part II of this thesis.

1.2 Linear Beam Dynamics

In a circular accelerator, the motion of a particle can be expressed as
oscillations around a momentum dependent closed orbit 2 commonly know as

2The average particle trajectory closes on itself after one complete revolution
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Table 1.1: Ion performance evolution and Run-# parameters shown for the
RHIC collider. Note that some runs have collisions with different energies
and the integrated luminosity listed is summed up over the different modes.
The flexibility of different collision energies is an important aspect of RHIC.
Enhanced luminosity numbers are facility goals c. 2008, before electron cool-
ing [6].

Run Species No of Ions/bunch β⋆ Emittance Lint

bunches [109] [m] [πµrad]
Design Au-Au 56 1.0 2 - -
Run-1 Au-Au 56 0.5 3 15 20 µb−1

Run-2
Au-Au 55 0.6 1-3 15-40 258.4 µb−1

p-p 55 70 3 25 1.4 pb−1

Run-3
d-Au 55/110 120d/0.7Au 2 15-25 73 nb−1

p-p 55 70 1 20 5.5 pb−1

Run-4
Au-Au 45 1.1 1-3 15-40 3.80 nb−1

p-p 56 70 1 20 7.1 pb−1

Run-5
Cu-Cu 35-56 3.1-4.5 0.85-3 15-30 43.6 nb−1

p-p 56-106 60-90 1-2 25-50 29.6 pb−1

Enhanced Au-Au 112 1.1 0.9 15-40 -
Enhanced p-p 112 2.0 1 25-50 -

betatron motion. The transverse motion can be expressed as

x(s) = x0(s) + xβ(s) +Dx(s)δ (1.3)

where, x0(s) is the reference closed orbit, xβ is the betatron amplitude, and
δ ≡ ∆p/p0 is the momentum deviation from the ideal particle with momentum
p0 and Dx is the dispersion function.

1.2.1 Transverse Betatron Motion

Assuming no dispersion and small amplitude betatron oscillation around
the closed orbit, the motion of the particles are governed by second order
homogeous differential equations also know as Hill’s equations

x
′′

+Kx(s)x(s) = 0 (1.4)

y
′′

+Ky(s)y(s) = 0 (1.5)

where,

Kx ≡ 1

ρ2 − ∂By

∂x
1

Bρ
, Ky ≡ ∂By

∂x
1

Bρ
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Figure 1.2: Nucleon-pair luminosity A1A2L delivered to the PHENIX experi-
ment (courtesy RHIC operations).

The solution to the 2nd order differential equations are

x(s) =
√

2Jβ(s) cos (ψ(s) + φ) (1.6)

x′(s) =

√

2J

β(s)

[

sin (ψ(s) + φ) + α(s) cos (ψ(s) + φ)
]

(1.7)

where J and φ are action angle invariants of motion, β(s) is the betatron
function, α(s) ≡ −β ′(s)/2, and ψ(s) is the phase advance given by

ψ(s1 → s2) =

s2
∫

s1

1

β(s)
ds (1.8)

Assuming that the motion of the particle is linear motion, the evolution of the
transverse coordinates of the particle motion in one turn can be conveniently
expressed through a linear matrix

[

x
x′

]

2

= MC

[

x
x′

]

1

(1.9)
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Figure 1.3: Frenet-Serret (curvilinear) coordinate system to describe particle
motion in an accelerator.

where C is the circumference of the accelerator and

MC = I cos (ψC) + J sin (ψC). (1.10)

Here, I is the 2×2 identity matrix, and

J =

[

α β
−γ −α

]

(1.11)

where γ ≡ (1 + α2)/β and stable motion of the particle requires

|trMC | ≤ 2. (1.12)

1.2.2 Emittance

The action variable J can be expressed in terms of x and x′ to yield the
Courant-Snyder invariant given by [8]

2J = γx2 + 2αxx′ + βx′2 = ǫ (1.13)

The trajectory of the particle in the (x, x′) frame follows an ellipse with an
area of 2πJ as shown in Fig. 1.4. When particles are subject to acceleration,
it is useful to define a normalized emittance

ǫN = βrγrǫ (1.14)
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Figure 1.4: The Courant-Snyder invariant ellipse with an area of πǫ.

which is generally conserved. Here, βr and γr are relativistic factors.
Given a distribution of particles, each tracing an ellipse, the rms beam

emittance can be defined as [9]

ǫrms =
√

σ2
xσ

2
x′ − σ2

xx′ (1.15)

where

σ2
x =

∫

[x− 〈x〉]2 ρ(x, x′) dx dx′ (1.16)

is the transverse beam size, and ρ(x, x′) is the normalized distribution function.
Therefore, the rms beam size is given by

√

β(s)ǫrms.

1.2.3 Dispersion

The position of a particle with a momentum deviation ∆p with respect to
the reference particle with momentum p0 can be expressed in terms of periodic
dispersion function given by

x(s) = D(s)δ (1.17)

where δ ≡ ∆p/p0 is the fractional momentum deviation. The Hill’s equation
of motion can be written as [9]

x′′β + (Kx(s) + ∆Kx)xβ = 0 (1.18)
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where, to first order

∆Kx =

[

− 2

ρ2
+K(s)

]

δ (1.19)

and Kx = (1/ρ2)−K(s) and K(s) = 1

Bρ
(∂By/∂x). The 2× 2 Courant-Snyder

matrix can be enlarged to include the dispersion terms as





x
x′

δ





2

= MC





x
x′

δ





1

+ MC





D(s)δ
D′(s)δ
δ





1

(1.20)

Here, MC is an extended version of Eq. 1.10 with

J =





α β 0
−γ −α 0
0 0 1



 (1.21)

1.2.4 Betatron Tune and Chromaticity

An important parameter in colliders is the number of betatron oscillations
in one turn which is commonly refered to as tune given by

Q =
1

2π
∆ψC =

1

2π

∮

ds

β
(1.22)

The particles with different momenta are focused differently. This effect of
momentum dependent focusing is known as chromatic aberration and results
in a tune shift given by

∆Q = ξδ (1.23)

where the natural chromaticity from quadrupoles is given by

ξ = − 1

4π

∮

Kβds (1.24)

A large chromaticity can result in an overlap of betatron tunes with resonances
due to magnet imperfections and lead to beam losses. Furthermore, chromatic-
ity can result in instabilities (head-tail) depending on its sign. Chromaticity
correction is usually achieved from non-linear elements like sextupoles. These
elements are sources of non-linearities and drive higher order resonances and
affect beam stability. They also result in a reduction of the dynamic aperture,
the available phase space area sustaining stable motion.
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1.2.5 Linear Magnetic Field Errors

The presence of dipole field errors gives an additional transverse orbit dis-
placement. The displacement at a location “s” due to the integrated effect of
N deflections θi is [10]

∆x(s) =

√
β

2 sin (πQ)

N
∑

i=1

θi

√

βi cos
[

|ψ(s) − ψ(si)| − πQ
]

. (1.25)

where θi = ∆B∆s/(Bρ) for a dipole, and θi = (Kl)iδxi for a horizontal
displacement of δxi of a quadrupole. The corresponding change in the length
of the closed orbit is given by

∆L =
N

∑

i=1

θiD(si) (1.26)

where D(s) is the dispersion function. It can be seen from Eq. 1.25 that dipole
perturbations can lead to integer resonances and the closed orbit becomes
unstable if the betatron tunes are close to an integer. A large orbit distortion
also reduces the available aperture for betatron oscillations.

Similarly, the presence of quadrupole errors results in a perturbation of the
β function. The integrated effect on the β function from N quadrupole errors
is given by [10]

∆β

β
=

1

2 sin (2πQ)

N
∑

i=1

(∆Kl)iβ(si) cos
[

2|ψ(s) − ψ(si)| − 2πQ
]

(1.27)

The corresponding tune shift due to gradient is given by

∆Q = −β(si)

4π
(∆Kl)i (1.28)

A second resonance condition at the 1

2
-integer is encountered from quadrupole

perturbations which is seen from Eq. 1.27. Therefore, a betatron tune near
the 1

2
-integer leads to a diverging solution.

1.3 RHIC Instrumentation

Like most accelerators, RHIC is equipped with a variety of instruments that
monitor the beam coordinates, intensities, losses and other beam properties.
These instruments not only establish stable circulating beam but also protect
the sensitive superconducting elements and electronics crucial for successful
operation. Some of the instruments are briefly decribed in the section.
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1.3.1 Beam Position Monitors

Beam position monitors (BPMs) are usually stripline or button type mon-
itors used to measure the transverse position of the beam centroid. The trans-
verse beam position is given by

x ≈ w

2

[

U+ − U−

U+ + U−

]

(1.29)

where U± is either the current or voltage signal from the electrode and w/2
is the effective width of the stripline. Fig. 1.5 shows a graphic of a stripline
BPM and a cutaway view of a prototype of a RHIC BPM. BPMs are typically

Figure 1.5: Left: A graphic of a stripline beam position monitor [11]. Right: A
cutaway view of the RHIC BPM (Courtesy J. Cupolo) designed for cryogenic
temperatures.

used to measure the closed orbit averaged over several turns (∼ 104 or larger).
This mode is usually robust and offers a good resolution due to the statistical
benefits (≤ 10 µm in RHIC). They are also used to measure turn-by-turn
(TBT) beam orbits which contain both position and phase information which
is of great interest for the measurement of several linear and non-linear aspects
of the lattice. However, issues relating noise, resolution, timing, and fast data
acquisition often limit the quality of the data. Part I (chapter 2- 5) of this
thesis will focus on bpm reliability, measurement and correction of linear optics
and coupling based on TBT data.



10

1.3.2 Beam Loss Monitors

The beam loss monitors (BLMs) are critical for the protection of the su-
perconducting magnets in RHIC. The RHIC BLMs are ion chambers with an
electrode in a cylindrical glass container enclosed in a metal chamber. The
chamber is typically filled with dry pressurized gas for sensitivity (Argon in
RHIC BLMs). A DC voltage is applied between the outer can and the center
electrode to create an electric field. Ionizing radiation passing through the
chamber collides with gas molecules producing ion pairs. The primaries and
secondaries are swept to the oppositely charged electrode by the electric field.
This results in a net current which is then passed through various electronics
to amplify and measure the amount beam loss. Pin diodes are also employed
in RHIC for fast and sensitive measurement of losses [12].

1.3.3 Profile Monitors

Ionization beam profile monitors (IPM’s) measure the beam profile by col-
lecting electrons from background gas ionization [12, 13]. IPM’s are primarily
used to measure beam emittance and injection matching. RHIC is equipped
with four IPM’s to measure horizontal and vertical profiles in each ring.
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Figure 1.6: A typical plot of the transverse profiles recorded by RHIC IPM’s.
The data points are averaged over 100 samples. They were taken during Run
2006, p-p collisons at 100 GeV (Fill # 7655). The transverse normalized
emittances are estimated to be ǫx ∼ 21π mm·mrad, ǫy ∼ 15π mm·mrad.

1.3.4 Wall Current Monitors

A wall current monitor (WCM) is a ceramic break in the beam pipe with
several parallel resistors spanning the break [12, 14]. The enclosure is damped
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by ferrites to extend the bandwidth from 3kHz out to 6GHz. The voltage
induced in the resistors due to image currents of the beam is measured to de-
termine both the beam current and longitudinal profile. RHIC is also equipped
with direct current transducers (DCCTs) to measure the average current by
balancing primary and secondary currents through a transformer.
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Figure 1.7: A typical longitudinal profile recorded by the RHIC WCM. This
data was acquired during Run 2004, p-p collisons with 56 bunches.

1.3.5 Transverse Kickers

RHIC is equipped with fast kicker magnets for injection, beam abort, and
tune measurements. Two transverse kicker magnets are available for tune
measurements in each ring, capable of generating single turn kick pulses of
approximately 140 ns by fast switches [12]. Dedicated dual plane BPMs in
each ring are used to measure the beam response (TBT) from a succesion of
kicks and calculate tunes which are very useful for machine developement and
operation. A typical beam response seen on a BPM due to a transverse kick
is shown in Fig. 1.8

1.3.6 AC Dipoles

Unlike a kicker magnet which imparts a impulse kick to the beam, an
AC dipole has an oscillating field to induce coherent large amplitude oscilla-
tions in the beam when driven close to a resonance. The amplitude of the
oscillations is given by [15]

x(s) ≈ 1

4π|δQ|
Bdl

Bρ

√

β(s)βd (1.30)
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Figure 1.8: Typical beam response as seen on a BPM due to transverse kick in
both planes. The decoherence time is in this case is approximately 300 turns
which is mainly dominated by linear chromaticity and also some non-linear
de-tuning.

where d is the location of the AC dipole, and δQ = Q0 −Qd is the tune sepa-
ration between the drive frequency and the betatron frequency. An AC dipole
can be ramped adiabatically and has the advantage of preserving the beam
emittance unlike an impulse kick. Coherent betatron oscillations overcome the
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Figure 1.9: Graphic of the ramp up, flat top, and ramp down of an AC dipole
field.

difficulties associated with decohered oscillations to measure beam properties
with known numerical techniques (for example broadening of the Fourier spec-
trum) [16]. In principle, the length of the AC dipole excitation is limited by
the data acquisition capability. In Part I of this thesis, AC dipole data is ex-
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tensively used to measure linear optics and coupling. Several other uses like ac-
celerating through depolarizing resonances [17] and non-linear studies [18, 19]
make the AC dipole an unique and invaluable device.
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Table 1.2: RHIC parameters for Au-Au, p-p, and Cu-Cu during Runs IV and
V. Tune scan simulations and experiments found betatron tunes atQx = 28.72,
Qy = 29.73 to provide better dynamic aperture and fewer spin resonances for
polarized protons [7].

Gold Protons Copper

parameter symbol unit value value value
Mass number A - 197 1 63
Atomic number Z - 79 1 29
Number of ions/bunch Nb 109 1 100 4.5
Number of bunches/ring - - variable, from 28 to 110

Circumference C m 3833.85

Energy per beam
injection

E GeV/n
10.8 28.3 12.6

store 100 100 & 190 100
Transition energy γt - 22.89

Magnetic rigidity
injection

Bρ T m
81.1 81.1 81.1

store 839.5 339.5 724.6

Dipole field
injection

B T
?? 0.33 ???

store ?? 1.37 ???

Betatron tune
horizontal Qx -

28.23 29.72
vertical Qy 28.22 29.73

β∗ at IP
injection

β∗ m
10

store 1-3
Quadrupole gradient - T/m ≈71
Operating temp, 4He T K 4

Harmonic number
injection

h -
360 360 360

store 2520 360 2520

RF voltage
injection

V MV
0.3 0.1 0.3

store 2-4 0.3 2-4

RF frequency
injection

ωrf MHz
28.15 28.15 28.15

store 198 28.15 198

Synchrotron freq.
injection

Qs Hz
120 25 145

store 333 43 270

Energy spread
injection

∆E/E 10−3 ±1.49 ±1.26 ??
store ±1.49 ±0 ??

Bunch area
injection

S95% eV s/u
0.5 0.5 0.7

store 1.1 1.2 1.0
Normalized emittance ǫn mm mrad 10π 20π 10π


