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LHC Collimation Project News

Layout has been finalized (placement of absorbers). Cleaning insertions will
be frozen in the next weeks!

Production of 125 collimators (all phase 1 and phase 3) has been approved
by CERN Finance Committee.

Production contract with industry being finalized.

Budget has been consolidated, including new budget for infrastructure of
phase 2 collimators and R&D for phase 2 collimators.

— Cables, water connections and base supports for phase 2 will be installed
already before LHC start-up in 2007 (reduce radiation exposure of
personnel to minimum for phase 2 installation).

— Phase 2 R&D will be starting at CERN in 2005. Work package with CERN TS
department to be defined.

Phase 2 of collimation is now an integral part of the LHC program and is
seriously prepared (significant money is spent on it).
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Basic Collimation Project Schedule

Start of phase 1 R&D, project start. Definition of phased approach.
Phase 1 hardware design verification with beam tests.

Collimation layout and phase 1 major designs frozen. Other phase 1 designs.
Start of phase 1 collimator production.

Start of collimator infrastructure installation.

Start of work on collimator control.

Start of phase 2 R&D.

All collimator infrastructure (phase 1, 2, 3) installed.
Collimator controls test with beam in SPS.

Construction of phase 2 prototypes.

Most of phase 1 collimation system installed (some special designs delayed).
Beam commissioning of phase 1 collimation.

All phase 1 & phase 3 collimators installed.
Completing production of collimator spares for phase 1.
Installation of phase 2 prototypes.

Beam tests of various phase 2 prototype collimators (different concepts:
improve impedance and/or improve efficiency, crystals, ...).
Decision on phase 2 concept, if required.

Production of phase 2 collimators.

Installation of phase 2.

Commissioning of phase 2 collimation.

LHC ready for nominal intensities (earliest time)!?



Collimator Controls
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Serious work starts now: Include experience from RHIC/TEVATRON on set-up procedures.
=>» Existing work package in LARP/Collimation (A. Drees).
=>» Specification by Summer 05.



Understanding LHC Cleaning Efficiency

Please note:

Cleaning efficiency is outcome of an interplay between several
processes. Quite complicated to calculate (numbers only with
numerical Monte Carlo simulations.

Many studies done over the years for LHC collimation with different
materials, lengths, impact parameters, ...

Here | give a general view of the interdependences! You will find
results also for “obsolete” choices, e.g. Al primary collimators.

| did not repeat a systematic study for a coherent set of parameters!

Should be done in the future for reference!



Multi-stage & Multi-turn Cleaning!
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Simplified View

Primary collimators: Primary function: Act as scatterer (spoiler).
Add small kick to protons (Multiple Coulomb Scattering).
Can induce inelastic interactions.

Important parameters:
Radiation length X, MCS Oms ~ VLength/ (E vXp)
Absorption length | , Inelastic scattering on average after 11

Material properties
Xo I

a
Tungsten 0.35cm 9.6 cm
Copper 1.4 cm 15cm
Aluminium 8.9 cm 39 cm
Graphite 25 cm 38 cm
Replacing primary collimators: 20 cm Al > 20cm C

~ twice smaller MCS
~ same absorption

Protons come back to primary collimator and have higher chance to inelastically interact in
primary collimator = less load on downstream secondary collimators and less leakage of
tertiary halo.



Cleaning Versus Time
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Shorter primary collimator =» Smaller kicks =» Longer cleaning time
=>» More inelastic interactions at primary collimator



. Change length of primary jaw:

0.0011

0.001
0.0009
0.0008

0.0006
0.0005 |
0.0004 y

Ineffciency

0.0003 }
0.0002 }

0.0001 | /

%, —, e
o N —

\|/I

0 | | I | | I | | |
0 0.1 02 03 04 05 06 0.7 0.8 0.9
Lorim [M]

prim

Observations: Win factor two for 0.2 m graphite (C)!
Stay with 0.2 m length for primary
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dN / (dx Ng) [um™]

Displacement (50 cm Cu)
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dN / (d8, Ny) [urad-]

Kick (50 cm Cu)
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dN / (d& N)

Energy Loss (50 cm Cu)
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Importance of single-diffractive scattering!



Realistic Impact Parameters
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Particles exit through surface of collimator for small impact parameters!




Role of Impact Parameter on Primary Collimator
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Impact Parameter with Slow Losses

Slow loss: Beam lifetime: 0.2 h Loss rate:
Uniform “emittance” Loss in 10 s:
blow-up
Assume drift; 0.3 sig/s
5.3 nm/turn
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R. Assmann

Transverse impact parameter

Almost all particles impact with
y =0.2mMm

Surface phenomenon!
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Scattering Angles at 7 TeV
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Survival after Collimator Hit (Old Example)
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Long survival after hit of primary collimator -> Multi-turn process!

Short survival after hit of secondary collimator > Single-turn process!



Radial Amplitude after Passage of 20cm C
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With unrealistic impact parameter! Realistically many particles will have less than
20 cm of path length in C (exit before)!



2. Vary length of secondary jaw with 0.2 m C as primary:
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Typical Impact Parameter on Secondary Coll.
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Exponential distribution: Many p with < 10 nm impact parameter!

E.g. 20 nrad angular misalignment: 20 nm offset after 1 m jaw length!
p see reduced collimator length (~25 cm)!



Scaling for Secondary Collimators

Replacing secondary collimators: 100 cm C = 100cmW
10 times higher MCS
4 times higher absorption

Protons at secondary collimators do not see full collimator length. Assume 10 cm
interaction length:

C: 0.6 absorption lengths.
W: 2.5 absorption lengths with 10 times higher MCS angles than C.

Though for same length tungsten 6 times less particles enter the tertiary halo, those
that still escape do so with higher amplitudes (shift halos to higher amplitudes)...

> Two competing processes...
Explanation for non evident scaling!?

Detailed scaling only with full tracking (all processes included).



MNormalized population

Narmalized population
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(inefficiency curve produced here)

=> Any shift right will decrease efficiency!

At arc dispersion point

-> Important role of energy
loss and dispersion!



Thanks for your attention...
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Most particles traverse the full 0.2 m length of the Al jaw!



H 1 720 865
Be 4 40 35

Al 13 27 39 8.9
Cu 29 635 | 15 1.4
W 74 207 | 9.6  0.35
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