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The ATLAS ZDC

<Role of ZDC in Heavy lon Program(s)
ePotential Role as an LHC Commissioning tool
<Expected Rates/Background at LHC

«/ZDC design and Prototype status



Role of ZDC In Heavy lon Program(s)

« Anticipated
— Heavy lon absolute/relative Luminosity
— HI Event Characterization

e Evolving
— HI Reaction Plane(v1)
— HI tag/trigger for Diffractive Physics
— d-Au,pp (and AuAu) diffractive Physics
— pp commissioning and Lumi monitoring
— Polarimetry(PHENIX)

=> Critical to LHC program of Deep Inelastic
Photoproduction (strong overlap with HERAII goals)



Event characterization using forward detectors
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Topics in Diffraction

Total Cross Sections

— RHIC methodology uses calculable EM cross sections to
calibrate (eg Coulomb Dissociation, gtd->n+p)

“Peripheral g-A interactions”

— Diffractive Vector meson production

— gy>ete

Deep inelastic g-A interactions

— -dijet, jet+g Heavy Flavor production
Other Forward Physics, eg pp->n+X




Tagged photon spectrum

Strength of interaction
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Towards the LHC

«ATLAS Coverage
eForward Instrumentation
«ATLAS reach injjand g
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Probing small x structure in the Nucleus with gN->jets, heavy flavor.

di-jet photoproduction-> parton distributions,x2
by gwith momentum fraction, x1

4p2/s=x1*x2

<y>~ -1/2*In(x1/x2)

X2 Signature: rapidity gap in adirection(FCAL veto)

Jet
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Rates and Kinematics

Event yields from a 1 month
HI (Pb-Pb) run at nominal
Luminosity.

Counts per bin of dpt=2 GeV
dx2/x2=+/- 0.25

Rates for ATLAS Dijet photoproduction

phu(Gev)

With R. Vogt and
M. Strikman
(PRL draft in preparation)
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Role of ZDC as a commissioning tool

e Assume existence of LBNL 1on Chambers
(based on integrated flux @1.4L, =>laL at
High Luminosity)

e Segmentation of lon Chamber now de-
emphasized

e ZDC adds coincidence constraint with ~18%
Se/E

e |ow background useful (required) for
commissioning

e ~2 cms vertex resolution from timing.

(this addresses need to measure crossing angle)
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raw rates (Hz)
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Why the accelerator Dept. can’t

do without us!!

PHENIX horizontal vernier scan
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QuickTime™ and a
decompressor
are needed to see this picture.
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Can we extrapolate RHIC case to LHC?

e Distances from I.p..RHIC(18m)=>140m

e Lorentz Boost:RHIC(100)=>7,000

=>dW increase by (70/10)°~50

=><t> of leading proton increase~(pq)~50

e And physics should mostly scale as ~In(s)

e Rough Agreement w. data=>generator level
adequate for projection to LHC
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Location, Location, Location
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Pythia Statistics(3<] hgge | <4)

elastic scattering events:

Fraction of BBC triggered events. 0%
Fraction of ZDCN triggered events: 0.79358%
Fraction of ZDCNS triggered events. 0%

single diffractive events:

Fraction of BBC trigger ed events. 5.69839%

Fraction of ZDCN trigger ed events. 6.98964%

Fraction of ZDCNS triggered events. 0.20909%
Fraction of ZDCNS& & BBC triggered events: 0.00486%
fraction of ZDCNS& & BBC/BBC: 0.0852872%

fraction of ZDCNS& & BBC/ZDCNS: 2.32436%

double diffractive events:

Fraction of BBC triggered events: 18.8746%

Fraction of ZDCN trigger ed events. 9.55965%

Fraction of ZDCNS triggered events. 1.01887%
Fraction of ZDCNS& & BBC triggered events. 0.12026%
fraction of ZDCNS& & BBC/BBC: 0.637154%

fraction of ZDCNS& & BBC/ZDCNS: 11.8033%

non diffractive events:

Fraction of BBC triggered events. 60.891%

Fraction of ZDCN triggered events. 5.02369%

Fraction of ZDCNS trigger ed events: 0.27898%
Fraction of ZDCNS& & BBC triggered events: 0.13947%
fraction of ZDCNS& & BBC/BBC: 0.229049%

fraction of ZDCNS& & BBC/ZDCNS: 49.9928%
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Simple Exercise with event topologies. data consistent with Pythia

w. Mate Csanad
Pythia s*acceptance expected Ratios PHENIX pp data
(ZzDC*BBC)/zDC
elastic s(mb) 10
bel(GeV-2) 13
bsd(GeV-2) 6
Single Diff s(mb) 14
Double diff s(mb) 1
non-Diff s(mb) 25
Single Diff s(mb),ZDC 0.03 2.30% \
Double diff s(mb),ZzDC 0.01 12% 22%
non-Diff s(mb),zZDC 0.08 50% /
sZDC/snondif 0.50%0 0.36%0
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ZDC energy distribution

Esouth2
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B RMS 26.35

B red. single-diffractive
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2D ZDCN vs ZDCS energy for for sdiff

South vs north energy distribution for single diffractive Esn1
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What is the physics behind pp ZDC

measurements?

Part is pp-p+X (ie single diffraction dissociation

t (LMIPcut)
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X-position
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Proton in 1 arm (black) balances more complicated
multiparticle final state (red)
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Corresponding Acceptance at LHC

Fractions in elastic scattering events:
BBC triggered events: 0%
ZDCN triggered events: 0%
ZDCNS triggered events: 0%

Fractions in single diffractive events:
BBC triggered events: 21.7%

ZDCN triggered events: 23.4%
ZDCNS triggered events: 0.013%

S ZDCLHC~S inel* 9%

Fractions in double diffractive events:
BBC triggered events: 21.69%
ZDCN triggered events: 48.72%
ZDCNS triggered events: 23.6%
ZDCNS&&BBC trig events: 5.05%

ZDCNS&&BBC/BBC: 23.29%
ZDCNS&&BBC/ZDCNS: 21.4%

Fractions in non diffractive events:

BBC triggered events: 97.8%
ZDCN triggered events: 34.6%
ZDCNS  triggered events: 11.9%
ZDCNS&&BBC triggered events: 11.7%
ZDCNS&&BBC/BBC: 11.9%
ZDCNS&&BBC/ZDCNS: 97.6%
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Energy Distribution in ZDC at LHC

Energy distribution in north ZDC for double diffractive
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Implications for LHC commissioning

Relative Luminometry Dynamic Range:
oZDC rateislinear to L>10%3 (where pileup ~20%)

At startup Luminosity backgrounds are negligible and can in any
case be easily computed from singles rates.

Absolute Luminometry(1):

L_arge dynamic range is useful for year 2 precision measurements of
absolute luminosity (which run at ~ 10%8) ie TOTEM/ATLAS
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Absolute Luminometry(2):

Calculated cross sections for
A.J.Baltz, C.Chasman and SNW NIM A417(1998)p.1

(errors can be inferred from above RHIC discussion)

Calculable large EM cross sections calibrate LHC Heavy lons

This has potential to do so aso for LHC pp
25



ATLAS ZDC Prototype Design(Materias: Tungsten Alloy and SS)
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ATLAS ZDC COST sheet
(less contingency and personnel cost)

Unit Cost($) Quantity total time from tO(wks)
Module Structure and Absorber
Quote from Starck(1l prototype) $11,700 1 11700
Delivery Estimate 8
Fiber for Prototype
Quote from CeromOptec 1.5 1435.2 2152.8
Delivery Estimate 4
Mesh PMT from Hamamatsu(R5924)
Cost Estimate(22mm Diam, FM PMT) 4500 1 4500
Delivery Estimate 6
Trim, Polish Quartz, Fab Ribbons
Estimate for Work @ IHEP 5000 1 5000
Delivery Estimate 4
Fabricate PMT Mount& LED flasher
Estimate of BNL Tech time 75 40 3000
Time to Complete 2
Assemble Module and checkout
Estimate of Cost for Equipment 2000 1 2000
Time to complete 2
Decision Reached on Prototype 4
Implement any engineering changes
Contingency Budget for changes 2000 1 2000
Estimated time to Complete 3

Engineering Costs to Implement LBNL Electronics

Costs for non-contributed hardware 8000 1 8000
Costs for testing ZDC module with LBNL FEE 3000 1 3000
One time cost for pre-production 41352.8

Final Production costs
Cost/module for Quantity estimate 21017.52 5 105087.6

Total Cost to Complete 146440.4

Worksheet for fiber length

Max fiber length in module(cms) 65
Module active width(cms) 9.2
fiber diameter(cms) 0.047
fiber pitch(cms) 0.05
number of layers 12
fiber purchase/module(meters) 1435.2
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Module Structure and Absorber
Quote from Starck(1 prototype)
Delivery Estimate

Fiber for Prototype
Quote from CeromOptec
Delivery Estimate

Mesh PMT from Hamamatsu(R5924)
Cost Estimate(22mm Diam, FM PMT)
Delivery Estimate

Trim, Polish Quartz, Fab Ribbons
Estimate for Work @ IHEP
Delivery Estimate

Fabricate PMT Mount& LED flasher
Estimate of BNL Tech time
Time to Complete

Assemble Module and checkout
Estimate of Cost for Equipment
Time to complete

Decision Reached on Prototype
Implement any engineering changes

Contingency Budget for changes
Estimated time to Complete

Engineering Costs to Implement LBNL Electronics

Costs for non-contributed hardware

Costs for testing ZDC module with LBNL FEE

One time cost for pre-production

Unit Cost($)

$11,700

1.5

4500

5000

75

2000

2000

8000
3000
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What we need to do next

e ATLAS ZDC design complete since Nov. ‘04
e Reviewed by Turner, Schmickler

e Now proceed to prototype construction (BNL
Physics funding)

e Need to understand interface to LHC DAQ

e \We’d like to do a beam test (possibly together
with TAN lon Chamber)
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What we need from LARP

e Collaboration on readout Issues,
funding for necessary electronics

e Support for possible beam test

e Travel, as needed to complete
Integration with accelerator
Instrumentation
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2D ZDCN vs ZDCS energy for ddiff

South vs north energy distribution for double diffractive Esn2
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2D ZDCN vs ZDCS energy for ndiff

South vs north energy distribution for non diffractive _Esn3
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Neutral particle en. distr.

green: non-diffractive
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Esouthn2
Entries 968467
Mean 51.11
B RMS 25.95
red: single-diffractive
~ blue: double-diffractive




Directed flow, v,, Is largest at ZDC location
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Physics Opportunities

The black disk limit: Diffractive scattering was observed in over 10% of all DIS events at
HERA. ---- operation with nuclei should allow the observation of afar greater fraction of
diffractive events, approaching the quantum mechanical limit of 50%. The detailed
diffractive data will provide a stringent test on our under standing of the strong

inter actions.

Three Dimensional M apping of Strong Matter: The study of exclusive reactions, such as
the production of vector mesons or real photons, will allow the mapping of strongly
interacting matter in nucleons and nuclei. These data are sureto bring a great leap
forward in our understanding of how nuclear matter isformed, and will be critical in the
sear ch for the Color Glass Condensate.

Radiation Patternsin Strong I nteractions: The study of the fundamental radiation
patternsin strong interactions, which lead to the small-x structure of nucleons, will be
studied by studying jet and particle production over a large rapidity range.
Hadronization in nucleons and nuclei: The evolution of colored quarksand gluons struck
by thevirtual photon in deep inelastic scattering into observed colorless hadronsis one of
the clearest manifestations of confinement.
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