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The Fortran program BBSOLVE numerically solves the Balbekov/Burov equation for single bunch
transverse instability. It may be used for any particle type. Forces from space charge, resistive wall
and multiple resonators are included. This note describes the algorithms and their implementation.

I. INTRODUCTION AND THEORY

Coherent instabilities are of significant concern for a wide variety of planned and existing accelerators. The theory
of these phenomena has been advancing steadily for decades [1–14]. Recently, an ordinary differential equation has
been developed by Burov [28] and refined by Balbekov [29, 30]. To derive this equation we begin by considering the
equation for the evolution of the transverse centroid as a function of position, momentum, and time,

(

∂

∂t
+ ωsu

∂

∂θ
− ωsθ

∂

∂u

)2

X(θ, u, t) + Q2Ω2X = 2Ω2
0Q0∆Q(θ)

{

X(θ, u, t) − X̄(θ, t)
}

+
G(θ, t)

γm
. (1)

In equation (1) t is time and Ω0 is the revolution frequency of a synchronous particle. The longitudinal coordinate
is θ with s/R = Ω0t − θ, with s the longitudinal Serret-Frenet coordinate. This is the opposite sign convention from
[30] for ease of numerics later. The synchrotron frequency is ωs and the momentum like variable is u = (1/ωs)dθ/dt.
The revolution frequency and tune for a given value of u are Ω and Q. The space charge tune shift as a function of
longitudinal postion is ∆Q(θ) ≥ 0 and the force due to wakefields is G(θ, t). Both these require the average postion
along the bunch X̄(θ, t). To obtain X̄ we need the longitudinal phase space density F (θ, u) defined so that Fdθdu is
the fraction of the beam in dθdu. The normalized line density is ρ(θ) =

∫

duF (θ, u) with
∫

ρ(θ)dθ = 1. Then

X̄(θ, t) =

∫

duX(θ, u, t)F (θ, u)

ρ(θ)
, (2)

where the u integral includes everywhere F is not zero.
To proceed one sets

X(θ, u, t) = Y (θ, u) exp(−iΩct + iχθ) (3)

where Ωc ≈ Q0Ω0, and
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Next one takes Ωx(u) = ΩQ and approximates

d2/dt2 + Ω2
x ≈ (d/dt − iΩx)(d/dt + iΩx) ≈ −2iΩx(d/dt + iΩx) ≈ −2iQ0Ω0(d/dt + iΩ0Q0 − iuωsχ).

Inserting all this in equation (1) and simplifying coefficients yields

ω̃Y (θ, u) + iu
∂Y
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= −λ(θ)(Y − Ȳ ) + G(θ). (5)

where λ(θ) = Ω0∆Q(θ)/ωs, ω̃ = (Ωc − Ω0Q0)/ωs and

G(θ) =

θ
∫

− θ̂

dθ1W̃ (θ − θ1)ρ(θ1)Ȳ (θ1). (6)
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In equation (6) the half bunch length is θ̂ and

W̃ (θ − θ1) =
NqR

8π2(ET /q)β2Q0Qs

W ([θ − θ1]/Ω0)e
i(Qc − χ)[θ − θ1], (7)

where there are N particles of charge q in a machine of radius R. The total energy per particle is ET with β = v/c.
The betatron and synchrotron tunes are Q0 and Qs, respectively. Equation (5) is equation (17) in [30] except that my

variable is θ (the negative of his θ). The reason for my choice of variables is that G(−θ̂) = 0 and numerical integration

can proceed from −θ̂ with a positive integration step.
Next one approximates

Y (θ, u) ≈ y0(θ) + uy1(θ) + u2y2(θ) (8)

Note that

Ȳ (θ) = y0(θ) + U2(θ)y2(θ) (9)

with

U2(θ) =

∫

u2F (θ, u)du
∫

F (θ, u)du

Inserting (8) in (5) and equating powers of u yields 3 equations
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2 − G = 0 (10)
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ω̃y2 + i
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To proceed set the right hand side of (11) to zero so that (11 and (12)) become
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where ’ denotes differentiation with respect to θ. Inserting these into (10) yields
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Notice that equation (13) is in terms of y0, not Ȳ that appears in the expression for G. Using (9)

y0 = Ȳ − U2y2 ≈ Ȳ +
U2

λ + ω̃

(

Ȳ ′

λ + ω̃

)′

(14)

directly inserting this expression into (13) would yield a 4rth order ordinary differential equation. Balbekov argues
that only the term proportional to ω̃ needs expression (14) and the other instances can use Ȳ ≈ y0. This is because
we are considering the case λ(θ) ≫ 1 which is true when ∆Qsc ≫ Qs. Making this approximation gives

ω̃Ȳ + U2

(

Ȳ ′

λ + ω̃

)′

− θ
Ȳ ′

λ + ω̃
= G (15)

with G(θ) given by equation (6) we have an integro-differential system for Ȳ . This equation is close to equation (20)
in [30]. To make it exactly equal to Balbekov’s result divide the right hand side of (15) by 1 + ω̃/λ.

We now limit discussion to the case

λ(θ) =
∆Qsc

Qs
(1 − θ2/θ̂2)α, (16)
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where ∆Qsc > 0 is the maximum space charge tune shift, Qs is the synchrotron tune, and the bunch lies within

|θ| < θ̂. Note that while we define ∆Qsc > 0 the actual incoherent particle tunes are always depressed by the space

charge force. The line density is ρ(θ) ∝ (θ̂2 − θ2)α and

U2
α(θ) =

θ̂2 − θ2

2α + 2
.

With these functions equation (15) has regular singlular points at ±θ̂. One of the allowed solutions is finite with
continuous first and second derivatives and the other is singular. On physical grounds we reject the singular result

and assume Ȳ (θ̂) and Ȳ (−θ̂) are finite.
For numerical purposes it is useful to define two first order differential equations

d

dθ
Ȳ (θ) = (λ(θ) + ω̃)Z(θ) (17)

U2(θ)
d

dθ
Z(θ) = θZ(θ) + ω̃Ȳ (θ) + G(θ) (18)

Since Z ′ is finite at ±θ̂ the boundary conditions are

0 = −G(−θ̂) = −θ̂Z(−θ̂) + ω̃Ȳ (−θ̂) (19)

0 = θ̂Z(θ̂) + ω̃Ȳ (θ̂) + G(θ̂) ≡ E(ω̃). (20)

The numerical scheme is to assume an initial value of ω̃. Then take Ȳ (−θ̂) = 1 and Z(−θ̂) = ω̃/θ̂. Next we numerically

integrate (17) and (18) to θ = θ̂. In general E(ω̃) 6= 0 because some of the singular solution will be present. Next we
numerically compute ∂Re(E)/∂Re(ω̃), and ∂Re(E)/∂Im(ω̃) and the same for Im(E), yielding a 2 by 2 matrix. Given
the value of E and its derivatives a linear solution is used to give an improved estimate of ω̃. By starting on a grid
of values of ω̃ we can be confident that all the eigenvalues in a given range are found.

Since U2(±θ̂) = 0 some care is needed in the numerical scheme. The problem starts by taking a uniform grid

θn = n∆ − θ̂, where n = 0, 1, . . .N − 1 and defining Z(θn) = Zn etc. Equations (17) and (18) become

Ȳn+1 − Ȳn = (∆/2)
[

(λ(θn+1/2) + ω̃)(Zn + Zn+1)
]

(21)

U2(θn+1/2)(Zn+1 − Zn) = (∆/2)
[

(θn+1/2)(Zn + Zn+1) + ω̃(Ȳn + Ȳn+1) + 2Gn

]

. (22)

The numerical approximation for Gn is the simplest possible

Gn =

n
∑

k=1

∆W̃ ((n − k)∆)ρ(k∆)Ȳk. (23)

Given (21) and (22) one obtains Ȳn+1 and Zn+1 from previous values. The error term is take as E(ω̃) = θ̂ZN + ω̃ȲN +
GN . One calculates E(ω̃), E(ω̃ + δω) E(ω̃ + iδω) where δω is initially an input parameter. After calculating the 2
by 2 matrix and δω̃ one compares |δω̃| to another input parameter |δω̃|max one takes δω̃1 = δω̃ min(1, |δω̃|max/|δω̃|),
which limits the step size. One then takes ω̃ → ω̃ + δω̃1 and δω → min(δω, |δω̃1|), and iterates until |E| is below some
prescried initial value Ethresh. 500 steps are allowed for convergence, which is plenty if Ethresh is within the limits of
numerical precision. After writing the eigenvalues and eigenvectors a new initial value of ω̃ is chosen and the process
repeats until all the initially prescribed values of ω̃ are exhausted.

II. USING THE CODE

The program bbsolve uses the files bbsolve.f and the include file bbsolve c.f. It compiles using the intel fortran
compiler with line extensions in double precision with the command ifort -132 -r8 -o bbsolve bbsolve.f. The
executable is bbsolve. The program is controlled by the input file bbsolve.in. An example input file is

22.8 3833. 40. -300.e3 360 gammat,circ,gamma0,vrf,nharm
28.1 0. 3.7e11 1. 1. 3. 6.e-9 tunex,chrom,pnumber,aatom,qatom,power,tauhat

3833. 72.e-8 0.036 0. slenx,rhoe,bpipe,wstep
100.e6 scimped
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1000 5 1 .5 .5 -1. npt,nr,ni,dqr,dqi,dqr0
1.e-6 1.e-4 .01 thresh00,thresh10,dtunemax0

2 npoley
0 -1.e14 2.e8 2.e9 wr,wi,sr,si

-1.e12 0 1.e8 0

The inputs used by the code are just the numbers. The characters to the right are comments to remind the user what’s
what. We will go through this input file line by line. The first line of actual input is 22.8 3833. 40. -300.e3

360. The value of the transition gamma gammat= 22.8 The circumference of the acclerator is circ=3833. meters. The
Lorentz factor for the beam is gamma= 40. The rf voltage amplitude is 300 kV and being above transition a negative
value is needed for stability vrf=-300.e3 Volts. The second line is the betatron tune 28.1=tunex, the chromaticity 0.
= chrom, the number of ions per bunch 3.7e11=pnumber, the atomic mass aatom=1., the atomic number qatom=1.,

the value of α in equation (15) is 3.0=power, and θ̂/Ω0 = tauhat = 6.E − 9 s. Line 3 defines the resistive wall
impedance and allows for a step function impedance. The resistive wall wake assume a length of pipe slenx=3833
meters, with resistivity rhoe=72.e-8 Ohm-meters, and pipe radius bpipe=0.036 meters. The value of the step wake
is step = 0. volts/coulomb/meter. Line 4 is the space charge impedance scimped = 100.e6 Ohm/meter. Line 5 gives
the number of incremetns in θ, npt=1000 and defines the initial values of ω̃. The initial values for the real part are
dqr0 + k*dqr for k=0,1,..nr. The initial values for the imaginary part is j*dqi for j = -ni,..,0,..ni. All j,k pairs
are used. The 6th line of the input file has thresh00 = 1.e-6 as the initial value for the numerical derivative of E,
δω described just after equation (22). The value thresh01=1.e-4 is Ethresh, the error allowed when evaluating the

boundary condition at θ = θ̂. The value dtunemax0=0.01 is the maximum step size, |δω̃|max. This value is smaller
than needed but makes the output files clearer later on. The next line gives the number of resonator poles to add to
the impedance, npoley=2. The input file concludes with npole=2 lines. The wake due to poles is

Wpole(t) = Re

(

npole
∑

1

wk exp(−skt)

)

(24)

where w1 = −1.e14i, s1 = 2.e8 + i2.e9, w2 = −1.e12, s2 = 1.e8 The units for wk are volts per coulomb per meter.
The units for sk are s−1. To run the code I find it best to create a main directory with the executable and then sub
directories for individual runs. In a subdirectory you need the input file and then type ../bbsolve. You will see

$ ../bbsolve
eta = 1.298668821175746E-003

tunes = 7.715702877976159E-004
head tail tune shift = 0.000000000000000E+000

dqsc/qs = 64.4815537294324
$

where I’ve assumed the prompt is $. The frequency slip factor is eta = 1/gammat2 − 1/gamma02, tunes is the

synchrotron tune, and head tail tune shift is 2θ̂∗chrom/eta where chrom = pdQ/dp is the un-normalized chromaticity
(Q’ in MAD). The ratio of the space charge tune shift in the center of the bunch to the synchrotron tune is dqsc/qs.

There are 4 output files. Each row of fort.70 contains θk, Re(W̃ (θk)), Im(W̃ (θk)). The file fort.21 gives the path
of ω̃ during iteration. It has 4 columns. Columns 1 and 2 are the real and imaginary parts of ω̃ as the iteration
proceeds. There are blank lines between different starting values of ω̃ so you can plot it with lines using gnuplot. The
third column of fort.21 gives the number of steps used in the iteration, beware if it’s 500! The last column of fort.21
is the value of |Eω̃|. The output file fort.66 has the initial and final values of ω̃ when the iteration converges. These
are the only values to trust. Columns 1 and 2 are the real and imaginary parts of the initial values. Columns 3 and
4 are the real and imaginary parts of the final values. A useful gnuplot plot command is

gnuplot> p ’fort.21’ u 1:2, ’fort.66’ u 3:4 w p 3

This command plots the points followed by all iterations in point type 1 (usually red) and the final points where
convergence occured in point type 3 (blue). Figure 1 shows the figure generated by the above command. The final file
is fort.44. This file contains the eigenvectors for eigenvalues that converged. There are 5 columns. The first is just
the values of θ. The second and third columns are the real and imaginary parts of Ȳ . The fourth and fifth columns
are the converged eigenvalues for the eigenvector. A useful plot is

gnuplot> p ’fort.44’ u 1:2 w l, ’’ u 1:3 w l

This command overplots the real and imaginary parts of all the eigenvectors. Figure 2 shows the result of this gnuplot
command.
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FIG. 1: Paths of iteration in ω̃
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FIG. 2: Converged eigenvectors.

III. DIFFICULTIES AND CONCERNS

Sometimes the results analogous to Figure 1 show points of concentration for the paths (red) but fewer converged
values (blue). In this case try

gnuplot set logscale y

gnuplot> p ’fort.21’ u 4 w l
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Figure 3 shows the results for our output file. Remember that one of the solutions to our differential equations is well

behaved and the other is singular. It is only the nonzero value of U2(θ̂ − ∆/2) that keeps our value of E from going
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FIG. 3: Values of |E| during iteration. All the iterations are plotted, one after the other.

to infinity for incorrect eigenvalues. Hence you may find that rather large values of thresh10 are needed for things
to converge.

This code is very new and there is a good chance of bugs. Any cross checks you can perform will improve things.
I am particularly concerned that I might have messed up the coefficient in equation(7). The code is rather short, not
even 300 lines. I would appreciate a few more pairs of eyes looking for problems!

IV. GETTING FREQUENCIES FOR MULTI-LINE PLOTS

The program getfreq reads fort.66, assumes that all tunes within 10−9 of each other are the same and writes
out the results ordered with respect to Reω̃. It is useful for making multi-line plots.
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