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Abstract

The general expression of the Stern-Gerlach force is deduced for a relativistic
charged spin-1

2 particle which travels inside a time varying magnetic field. This
result was obtained either by means of two Lorentz boosts or starting from
Dirac’s equation. Then, the utilization of this interaction for attaining the spin
states separation is reconsidered in a new example using a new radio-frequency
arrangement.

1 The Relativistic Stern-Gerlach Force

The time varying Stern-Gerlach, SG, interaction of a relativistic fermion with an
e.m. wave has been proposed to separate beams of particles with opposite spin states
corresponding to different energies[1]. We will show how spin polarized particle will
exchange energy with the electromagnetic field of an RF resonator.

Let us denote with (x, y, z) the coordinates of a particle in the laboratory, and
with (x′, y′, z′) the coordinates in the particle rest frame, PRF. In the latter the SG
force that represents the action of an inhomogeneous magnetic field on a particle
endowed with a magnetic moment �μ is

�f ′
SG = ∇′(�μ∗ · �B′) = ∂

∂x′ (�μ
∗ · �B′)x̂ + ∂

∂y′ (�μ
∗ · �B′)ŷ + ∂

∂z′ (�μ
∗ · �B′)ẑ (1)

with
�μ = g e

2m
�S. (2)

Here e is the elementary charge with “ + ” for protons and positrons, p, e+, and ′′ =′′

for antiprotons and electrons, p̄, e−, making �μ and �S either parallel or antiparallel to
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each other, respectively. m is the rest mass of the particle, g the gyromagnetic ratio
and a the anomaly defined as

a = g−2
2

=

⎧⎪⎨
⎪⎩

1.793 (g = 5.586) for p, p̄

1.160 × 10−3 for e±
. (3)

Notice that in Eq.(1) we have defined the magnetic moment as μ∗ in the rest

frame, rather than as μ′. In the rest frame the quantum vector �S, or spin, has

modulus |�S| =
√

s(s + 1)h̄ and its component parallel to the magnetic field lines can
only take the following values

Sm = (−s, − s + 1, ...., s − 1, s)h̄, (4)

where h̄ is the reduced Planck’s constant. Combining Eqs.(2) and (4) we obtain for
the magnetic moment in the PRF

μ = |�μ| = g |e|h̄
4m

=

⎧⎪⎨
⎪⎩

1.41 × 10−26 JT−1

9.28 × 10−24 JT−1
. (5)

For a particle traveling along the axis ẑ, the Lorentz transformations of the dif-
ferential operators and of the force yield⎧⎪⎪⎨

⎪⎪⎩
∂

∂x′ = ∂
∂x

∂
∂y′ = ∂

∂y
∂

∂z′ = γ
(

∂
∂z

+ β
c

∂
∂t

)

�f⊥ = 1
γ

�f ′
⊥ �f‖ = �f ′

‖ (fz = f ′
z)

. (6)

The force (1) is boosted to the laboratory system as

�fSG = 1
γ

∂
∂x

(�μ∗ · �B′)x̂ + 1
γ

∂
∂y

(�μ∗ · �B′)ŷ + ∂
∂z′ (�μ

∗ · �B′)ẑ. (7)

Because of the Lorentz transformation of the fields[3] �E, �B and �E ′, �B′
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�E ′ = γ( �E + c�β × �B) − γ2

γ+1
�β(�β · �E)

�B′ = γ
(

�B − �β
c
× �E

)
− γ2

γ+1
�β(�β · �B)

. (8)

the energy in the rest frame (�μ∗ · �B′) becomes

(�μ∗ · �B′) = γμ∗
x

(
Bx + β

c
Ey

)
+ γμ∗

y

(
By − β

c
Ex

)
+ μ∗

zBz. (9)

Combining Eqs.(9) and (7), by virtue of Eq.(6), after some algebra we can finally
obtain the SG force components in the laboratory frame:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

fx = μ∗
x

(
∂Bx

∂x
+ β

c
∂Ey

∂x

)
+ μ∗

y

(
∂By

∂x
− β

c
∂Ex

∂x

)
+ 1

γ
μ∗

z
∂Bz

∂x

fy = μ∗
x

(
∂Bx

∂y
+ β

c
∂Ey

∂y

)
+ μ∗

y

(
∂By

∂y
− β

c
∂Ex

∂y

)
+ 1

γ
μ∗

z
∂Bz

∂y

fz = μ∗
xCzx + μ∗

yCzy + μ∗
zCzz,

(10)
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Czx = γ2
[(

∂Bx

∂z
+ β

c
∂Bx

∂t

)
+ β

c

(
∂Ey

∂z
+ β

c
∂Ey

∂t

)]

Czy = γ2
[(

∂By

∂z
+ β

c
∂By

∂t

)
− β

c

(
∂Ex

∂z
+ β

c
∂Ex

∂t

)]

Czz = γ
(

∂Bz

∂z
+ β

c
∂Bz

∂t

)
. (11)

These results can also be obtained from the quantum relativistic theory of the
spin-1

2
charged particle[2]. Let us introduce the Dirac Hamiltonian

H = eφ + c�α · (�p − e �A) + γ0mc2 (12)

having made use of the Dirac’s matrices

�γ =
( O �σ
−�σ O

)
, γ0 =

( I O
0 −I

)
, �α = γ0�γ =

(O �σ
�σ O

)
, (13)

where �σ is a vector whose components are the Pauli’s matrices

σx =
(

0 −i
i 0

)
, σy =

(
1 0
0 −1

)
, σz =

(
0 1
1 0

)
, (14)

I is the 2×2 identity matrix, O the null matrix and having chosen the y-axis parallel to
the main magnetic field. A standard derivation leads to the non relativistic expression
of the Hamiltonian exhibiting the SG interaction with the “normal” magnetic moment

H̃ = eφ + 1
2m

(�p − e �A)2 − eh̄
2m

(�σ · �B) (15)

which coincides with the Pauli equation and is valid in the PRF.
To complete the derivation we must add the contribution from the anomalous

magnetic moment to the SG energy term in the previous equation, with a factor
1 + a = g

2
, yielding

−g
2

eh̄
2m

�σ · �B = −�μ∗ · �B with �μ∗ = g eh̄
4m

�σ. (16)

In order to obtain the z-component of the SG force in the Laboratory frame along
the direction of motion of the particle, we must boost the whole Pauli term of Eq.(15)
by using the unitary operator U in the Hilbert space[4], which expresses the Lorentz
transformation

U−1
[
g eh̄

4m
(γ0�σ · �B′)

]
U = g eh̄

4m
(γ0�σ · �B′) [S−1(γ0σx)S + S−1(γ0σy)S + S−1(γ0σz)S]

(17)
that can be written in terms of the equivalent transformation in the 4×4 spinor space

S = exp
{
γ0(�γ · v̂)u

2

}
= cosh u

2
+
(

0 σz

σz 0

)
sinh u

2
(18)

with

v̂ = �v
|�v| , cosh u = 1√

1−β2
= γ = Lorentz factor, sinh u =

√
γ2 − 1

(
β = v

c

)
. (19)
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From Eqs.(17) and (18), due to the algebraic structure of the γ and σ matrices,
we obtain in the laboratory frame the three components of the SG force

⎧⎪⎨
⎪⎩

S−1(γ0σx)S = γ0σx

S−1(γ0σy)S = γ0σy

S−1(γ0σz)S = γ(γ0σz) + iγ0γ5

√
γ2 − 1

, (20)

with

γ5 = γxγyγzγ0 = i
(O I
I O

)
. (21)

From Eqs.(20) we can deduce the expectation values of the SG force in the Lab-
oratory system with a defined spin -along the y-axis in our case- via the expectation
values of the Pauli matrices and of the Pauli interaction term of the proper force

fz = γ0σyγ
2μ∗

[(
∂By

∂z
+ β

c
∂By

∂t

)
− β

c

(
∂Ex

∂z
+ β

c
∂Ex

∂t

)]
. (22)

In our case only the second of Eqs.(20) gives a non vanishing result, while both the
first and third produce a null contribution to the force, because of the orthogonality
of the two spin states s = ±1

2
and the properties of the σ matrices.

2 The radio-frequency system

Let us consider the standing waves built up inside a rectangular radio-frequency
resonator, tuned to a generic TE Mode[1]. Resonator dimensions are: width a, height
b and length d, as shown in Fig.1. On the cavity axis, which coincides with the beam
axis, the electric and magnetic fields are[5]

Ex = −B0

(
nπ
b

)
ω

K2
c

cos
(

mπx
a

)
sin
(

nπy
b

)
sin
(

pπz
d

)
sin ωt

Ey = B0

(
mπ
a

)
ω

K2
c

sin
(

mπx
a

)
cos
(

nπy
b

)
sin
(

pπz
d

)
sin ωt

Ez = 0 [as typical for any TE mode]

Bx = − B0
K2

c

(
mπ
a

) (
pπ
d

)
sin
(

mπx
a

)
cos
(

nπy
b

)
cos
(

pπz
d

)
cos ωt

By = − B0
K2

c

(
nπ
b

) (
pπ
d

)
cos
(

mπx
a

)
sin
(

nπy
b

)
cos
(

pπz
d

)
cos ωt

Bz = B0 cos
(

mπx
a

)
cos
(

nπy
b

)
sin
(

pπz
d

)
cos ωt

where B0 is the RF peak magnetic field, m, n and p are integer mode indeces, and

Kc =

√(
mπ
a

)2
+
(

nπ
b

)2
. (23)

The angular frequency of the e.m. wave from the RF generator is

ω = ωRF = 2πc
λRF

= c

√(
mπ
a

)2
+
(

nπ
b

)2
+
(

pπ
d

)2
. (24)
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X

a

b

d

beam direction

Y

Z

Figure 1: Sketch of the rectangular cavity. The coordinates of the beam axis are
x = a

2
and y = b

2
.

In contrast with an open waveguide, in a bounded cavity we can define a phase
velocity Vph and a cavity wavelength λwg, as typical of any e.m. in a refractive media,
according to the relations

Vph

c
= βph = d

pπ

√(
mπ
a

)2
+
(

nπ
b

)2
+
(

pπ
d

)2
. (25)

and
λwg = βphλRF. (26)

It is also

Vph = βphc = βph
λRF

τRF
=

λwg

τRF
(27)

Notice that βph can take any value, even larger than one, since it is freely depen-
dent on the cavity geometrical parameters. Moreover, combining Eqs.(24) and (25)
we obtain

d = 1
2
pβphλRF = 1

2
pλwg (28)

which describes the connection between the cavity length d and the wavelengths, as
shown in Fig.2. For simplicity, let’s choose the transverse electric mode TE01p, so
Eqs.(24) and (25) reduce respectively to

ω = ωRF = c

√(
π
b

)2
+
(

pπ
d

)2
= βphc

π
d

and βph =

√
1 +

(
pd
b

)2
(29)

or, setting the mode index p = 1,

ω = ωRF = c

√(
π
b

)2
+
(

π
d

)2
= βphc

π
d

and βph =

√
1 +

(
d
b

)2
, (30)
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By

d+δ−δ

d

d

B0 __b
d

__b
d

0−B

y

z
0

Figure 2: Vertical component (inside the cavity) and fringes (at both cavity ends) of
By for p = 1.

which are the quantities pertaining to the preferred TE011 mode whose non zero field
components on the cavity axis are

⎧⎪⎪⎨
⎪⎪⎩

By(z, t) = −B0
b
d
cos

(
πz
d

)
cos ωt

Ex(z, t) = −ωB0
b
π

sin
(

πz
d

)
sin ωt

. (31)

It is important to emphasize that in all the field components met so far there is
a clear separation between spatial and temporal contributions, as typical of standing
waves. Besides, the boundary conditions of the electric and magnetic fields of the
e.m. dictate the shape of the spatial component which, in turn, oscillates in time
with the frequency ωRF . Then, at the cavity entrance and exit the field components
(31) become on axis

Entrance =⇒
⎧⎪⎨
⎪⎩

By(0, t) = −B0
b
d
cos ωt

Ex(0, t) = 0
. (32)

and

Exit =⇒
⎧⎪⎨
⎪⎩

By(d, t) = −B0
b
d
cos π cos ωt = B0

b
d
cos ωt

Ex(d, t) = −ω b
π

sin π sin ωt = 0
. (33)

where t is a generic time. The null values of Ex at the cavity ends confirm a typical
pattern of the transverse electric mode.
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Figure 3: Edge fields at both ends of a single cavity for p equal to either an even
number (left) or an odd number (right).

3 Stern-Gerlach interaction with the cavity field

From Eq.(22), after some algebra, we obtain tha a charged fermion which crosses a
radio-frequency resonator, tuned on the TE011 mode, acquires (or loses) an energy
amount when interacts with the field component in the “body” of the cavity shown
in Fig. 2[1]

(δU)X−ing =
∫ d

0
fzdz =

∫ d

0
μ∗Czydz = β2γ2B0μ

∗ b

d

β2
ph(2 − β2) − 1

β2
ph − β2

(
1 + cos

βph

β
π

)

(34)
still assuming that the spin is not precessing.

However, since the cavity cannot be completely enclosed but must have apertures
at both ends to allow the particle bean to pass through and consequently will have
fringe fields, in order to calculate the full SG interaction it is necessary to deal with
the interaction with these fields. This is discussed right below.

3.1 Fringe fields

In order to fulfill the boundary conditions (32) and (33), a cavity tuned in its TE011

mode must be exactly filled by either an even or an odd number of cavity dependent
half wave-lengths, Eq.(26), as illustrated in Figs. 2 and 3.

Consider now a bunch of particles crossing the cavity in synchronism with the RF
field. This requires that the bunch centre of mass that enters the cavity at the instant
t = 0 and would leave the cavity at t = τRF, at magnetic field values, respectively

By(0, 0) = −B0
b
d

and By(d, τRF) = B0
b
d

(35)

The field values at both ends fade rapidly to zero over a small distance |δ| just
outside the cavity (see Figures.) We may consider these fringe fields as small-valued
functions in the (y, z)-plane, since the time δt necessary for a particle to proceed
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through this distances can be very small in comparison with τRF, depending of course
by the size of the beam channel, or

⎧⎪⎨
⎪⎩

[By]in = −B0
b
d

g(z) with g(−δ) = 0, g(0) = 1

[By]out = B0
b
d

h(z) with h(d) = 1, h(d + δ) = 0
. (36)

Under these conditions, a relativistic fermion with its spin directed along the y-axis
and traversing the cavity will experience a SG force parallel to the z-axis (direction
of motion), see Eq.(10)

fz = μ∗Czy (37)

where Czy is given by the second of the set of Eqs.(11). For the moment we assume
that the spin will conserve its orientation during traversal

The electric field Ex and its derivatives in this equation are almost constantly
zero, because of the boundary conditions on the walls of the cavity and at the extreme
points z = −δ and z = d + δ. Furthermore, the function

(
∂By

∂t

)
is almost zero along

the fringe segments because of its proportionality to sin ωt, with t equal to the δt
mentioned before. Consequently we have

Czy � γ2 ∂By

∂z
, (38)

and for the entire fringe field

⎧⎪⎪⎨
⎪⎪⎩

[fz]in = −B0μ
∗ b

d
γ2
(

dg(z)
dz

)

[fz]out = B0μ
∗ b

d
γ2
(

dh(z)
dz

) . (39)

Making use of eqs. (38) and (39), the energy increments [δU ]in and [δU ]out related
to the fringe fields are easily evaluated since the integrals

∫ 0
−δ fzdz and

∫ d+δ
d fzdz only

depend upon the extreme points (36) and do not depend on the curve that connects
them. In fact fzdz becomes an exact differential. Then we obtain for the energy
exchange at both edges

(δU)in = (δU)out = −B0μ
∗ b

d
γ2. (40)

The total energy exchange at the edges is therefore

(δU)ff = (δU)in + (δU)out = −2B0μ
∗ b

d
γ2. (41)

3.2 Full energy interaction

By adding the fringe contributions (41) to the cavity body crossing contribution (34)
seen before, obtain

(δU)tot = (δU)ff + (δU)X = −γ2B0μ
∗ b

d
f(βph, β) (42)
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with

f(βph, β) =
[
2 − β2 β2

ph(2−β2)−1

β2
ph

−β2

(
1 + cos

βph

β
π
)]

. (43)

For ultra relativistic particles (β � 1) Eq. (42) reduces to

(δU)tot � −γ2B0μ
∗ b

d
(1 − cos βphπ). (44)

This last result deserves a few comments. In fact, if we set

βph = 2 =⇒ d = 1
2
λwg = λRF (45)

the total energy contribution (44) vanishes, implying a full cancellation of the effect.
On the other hand if we set

βph = 3 =⇒ d = 1
2
λwg = 3

2
λRF (46)

the total energy contribution (44) becomes

(δU)tot � −2γ2B0μ
∗ b

d
(47)

as deduced from Eq.(28). In Table I we gather values calculated from Eq.(43) for
non-relativistic and ultra-relativistic particles for, either βph = 2 or βph = 3 at two
proton energies. Each βph is accompanied by the corresponding ratio cavity-length
over cavity-height.

Table I: f(βph, β)

βph ⇒ d
b

Low Energy High Energy
(e.g. Wkin = 5 MeV) (e.g. Wkin = 30 GeV)

2 ⇒ 1.732 2.01 0
3 ⇒ 2.828 2.02 2

Furthermore, if we consider two contiguous cavities, there will be a gradient be-
tween the positive By at the end of the first cavity and a negative By at the beginning
of the second cavity, as shown in Fig. 4. In this case we may consider the magnetic
field at the interface as linearly dependent on z, that is

[By(z)]X−ing = −2B0
b
dδ

z. (48)

Reiterating what done before, obtain

∂
∂z [By(z)]X−ing = −2B0

b
dδ

fz = −2B0μ
∗ b

dδ γ2

(δU)cav2cav = (δU)cc =
∫ δ

2

− δ
2

fzdz = −2B0μ
∗ b

d
1
δ

[
δ
2 − (− δ

2

)]
γ2 = −2B0μ

∗ b
dγ2

(49)

9



B0
b
d

−B0
b
d

δ/2
−δ/2

(n+1)−th cavityn−th cavity

z

Figure 4: Magnetic field gradient between two contiguous cavities

which means that, for N cavities, we shall have as final result for ultra relativistic
particles

(δU)tot = N(δU)X−ing − (N − 1)(δU)cc − (δU)ff =

⎧⎨
⎩

0 for βph = 2

2N
2.83B0μ

∗γ2 for βph = 3
. (50)

Conversely, if βph is even, particles with their spin pointing always in the same
direction cannot exchange energy with the standing wave of a TE resonator. A spin
rotator[6] can align the particle magnetic moments either parallel or anti-parallel
to the directions of the magnetic field gradients, thus allowing the desired energy
interaction. This situation would be similar to what happens in a multi-stage tandem
van de Graaff, where the ions are repetitively accelerated by the same electrostatic
field, becoming alternatively negative, via an addition of electrons, or positive, via
electron stripping.

Unfortunately, the field integral (BMd = βπmc
ae

= β 5.46 Tm, for p, p̄) for attaining
a spin rotation is so large that this solution is unpractical. Instead, the example
of βph equal to an odd number seems much more suitable since does not require
cumbersome magnets, but only longer cavities (compare Eqs. (45) and (46)). In
fact, the magnetic moments are (de)accelerated by the field tails at the cavity ends,
while don’t change their energy when crossing the cavities. This situation resembles
the Wideroe linac where the charged particles are accelerated by the electric fields
between two contiguous drift tubes, but don’t change their energy while crossing the
tubes themselves.
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4 Concluding remarks

On the basis of the previous estimates, we feel ready to propose the time varying SG
interaction as a method for attaining a spin state separation of an unpolarized beam
of, say (anti)protons, since the energy of particles with opposite spin orientations will
differ and beams in the two states can be separated. In a first stage of the study of a
sensible practical design, we intend to proceed with numerical simulations. As a first
step, we intend to verify the correctness of Eqs.(42) and (43) setting once βph = 2 and
then βph = 3, in a cavity where the field line pattern can be realistically controlled.

Beyond the verification of the present theory, there is also the aim of studying the
effects generated by the spin precession inside the cavity, that we did not yet address
in this note.

Next, we shall consider a spin splitter scheme based on the lattice of an existing or
planned (anti)proton ring endowed with an array of splitting cavities. The principal
aim of the latter implementations is to check the mixing effect[7][8] of the longitudinal
phase-plane filamentation, i.e. the actual foe which could frustrate the entire spin
splitting process.
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