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The Froissart-Stora [1] formulation of the Thomas-BMT equation [2] may be written 
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 The Lorentz force equation is 
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Combining (1) and (2) we obtain  
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The Froissart-Stora equation (1) is independent of the coordinate system. But, since the 
paricle moves in the vicinity of a closed orbit, it is convenient to use a coordinate system 
based on a closed reference orbit as we consider particles whose motion takes place near 
(though not exactly on) that orbit. We assume the reference orbit is plane and has a 



circumference we denote by 2πR. We transform to a coordinate system (a Frenet-Serret 
system) based on this reference orbit. The position of a particle is characterized by the 
vector ξ

G
 from the point on the reference orbit closest to the particle, and we define the 

coordinates to be: 
 
s =  the distance along the reference orbit from an origin point (arbitrarily chosen) on the 
reference orbit to the point on the reference orbit closest to the particle. 
 
z  = the vertical component of  ξ

G
, i.e. the distance from the plane of the reference orbit 

to the particle. 
 
x  = the horizontal component of  ξ

G
, which is the length of the projection of  ξ

G
on the 

orbit plane. 
 
We also define ( )sρ to be the radius of curvature of the reference orbit at s.; in a straight 
section the curvature 1/ ( )sρ  is zero, and the coordinates are locally Cartesian. 
 

It is convenient to change to θ = s/R  instead of the time t as the independent 
variable, with  

 /
1 /

v Rd dt
x

θ
ρ

=
+

 (5) 

(note that s is the distance along the reference orbit, not exactly the distance traversed by 
the particle, and that θ = s/R  is not exactly identical with the angle through which the 
particle has turned). 
 
 In what follows we shall sometimes use the prime for differentiation by θ ; i.e. 

 ' dXX
dθ

≡  

for any variable X. 
 
 We define basis vectors 1 2 3ˆ ˆ ˆ, ,  e e e to be the unit vectors in the x, s, z directions. 
These basis vectors rotate, with 
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Following Kondratenko [3] we introduce a “natural” or “local” reference frame based on 
the actual trajectory of the particle. The basis vector 2û  is taken to be exactly the unit 

vector 2 2 2
2 1 3ˆ ˆ ˆ ˆ( ' / ' / ) / 1 ( ' ' ) /v e x e R z e R x z R= + + + +  in the direction of the 

instantaneous particle velocity, and the other two are in the local radial and vertical 
direction orthogonal to v̂ : 
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where the subscript N denotes normalization to unit length, and the ≈  relations are 
correct to first order in the excursions x and z from the reference orbit. 
 
 The new basis vectors, of course, also rotate; using (6) and (7) we obtain, to first 
order in x and z, 
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Here the independent variable θ and the excursions x and z are still defined with respect 
to the reference orbit, while the basis vectors are derived from the actual trajectory. 
 
With θ  as the independent  variable the F-S equation is 

 ' ;    [ ( )]d S RS S F F B G B B
d B

γ
θ ρ

⊥≡ = × = + + &

JGJG JG JG JG JG JG JG
 (9) 

where m vB
q
γρ =  is the magnetic rigidity of the particle. 

Using (8) we find for S1, S2  and S3 , the components of the spin along the “natural” basis 
vectors: 
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We may, following Courant and Ruth[4] and S Y Lee[5], express ,  and  B B F⊥ &
JG JG JG

 in 
terms of the particle excursions, governed by the Lorentz force equation (2). In terms of 
the fixed vectors ê  
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where we have added a solenoidal field Bsol (the longitudinal field on the reference orbit) 
which was not included in [4] and [5]). In the trajectory-based coordinate system (8) this 
becomes 
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which is a slight simplification since B⊥

JG
 has no component in the direction 2û . We thus 

have (to first order in the displacements x and z) 
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so that (10) becomes 
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Note that if G=0, i.e. if there is no anomalous magnetic moment, the longitudinal spin 
component S2  is constant: helicity is conserved. 
 
 The dominant terms in the equations for 1 2'  and 'S S  are /G Rγ ρ∓  , 
 leading to the precession frequency (spin tune) Gγ. of oscillations in x and z. 
  

The dominant depolarizing term (contribution to 3 'S ) is the last term in the 
equation for 3 'S  and is proportional to Gγ, not to (1+ Gγ), in agreement with   
Kondratenko, Sivers and others [3]. In the calculation of depolarization  due to transverse 
field perturbations (including magnet errors and rf excitation dipoles) and/or vertical 
betatron oscillations, appearing in much of the literature on spin dynamics including [4], 
[5] and [6] the basis vectors 1 2 3ˆ ˆ ˆ, ,  e e e are used; the relations corresponding to (14) in S 
Y Lee’s book [5], rewritten in our notation, are 
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Conclusion 

 
Both formulations (14) and (15) are correct. But the components S1,  S2 ,  S3 

addressed here in (14) have a direct physical significance, S2  being the helicity (spin 
component along the velocity direction) which is strictly longitudinal, while S1 and S3 are 
strictly transverse components. The components ,  ,  x s zS S S  in (15), along the axes of the 
coordinate system defined by the reference orbit,  all contain a mixture of the longitudinal 
and the transverse, and therefore have much less physical significance.  Therefore (14) 
and not (15) is the relation that must be used in calculations of polarization, including 
resonance strength and strengths of (full or partial) Siberian snakes. Fortunately this 
makes very little practical difference because we almost always deal with large values of 
 Gγ. But in the case of deuterons G is small  and negative, and indeed analysis of some 
recent COSY data, by Leonova and others, also point to the factor Gγ, not 1+ Gγ.  
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