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J. Seeman, et. al.,
EPAC’02, PAC’03

PEP-Il Collision Parameters

IP Parameter Design Recent peak performance
C-M energy (GeV) (e*: 3.1 ;¢:9.0) 10.28 10.28
Crossing angle (mrad) 0.0 <1.0
Luminosity (x 1033/cm?/s) 3.00 6.11
Number of bunches 1658 939

LER current (mA, €%) 2146 1750

HER current (mA, ¢°) 750 1070

B,*/B* (cm/cm) 1.5/50 1.2/35+, 1.2/41-
Emittance (nm-rad) (y/x) 1.5/49 1.4/33+, 3.1/49-
IP rms beam size 6,/c, (um) 4.7/ 157 5.0/140
LER tunes (x/y) 38.64/36.57 38.52/36.57
HER tunes (x/y) 24.62 /23.64 24.52 /23.62
Beam-beam parameter (vertical +/-) 0.03 0.048 / 0.060
Beam-beam parameter (horizontal +/-) 0.03 0.065/0.075

W. Kozanecki Beam-beam Workshop, Montauk, 19-23 May 03



O Energy-transparency conditions
g'-x,y = g-x,y <===> I+b E+ = I-b E

. + - + -
(provided 3 xy = B xy1 € xy = Exys V

+

xy Y

xy-+)

© largely violated in PEP-II

@ best performance repeatedly achieved with 17/ 1 ~1.7 -2
( not 2.9!)

Q In contrast to ‘classical’ single-ring collider,

+ - + - - + -
@e,,#&y, (@nd B, ~p, only) =>c,  #0c,,
© interpreting luminosity in terms of ¢ requires additional

knowledge and/or assumptions on individual IP spot sizes
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F.-J. Decker,

PA?Oa]hm Interplay between e- - cloud & beam-beam issues

Bunch-by-bunch luminosity versus position Standard luminosity pattern in 2003
along the whole train. Pattern: ‘by-4’ (8.4 ns Pattern: ‘by-3’ (6.3 ns spacing)
spacing) with 7 additional big gaps, July 2000.

Mini-trains of 10 and 11 bunches are
alternating. There is an ion gap of about 3%.
In this pattern each mini-train has constant
luminosity  (except for bunches 1+3).
Solenoids now cover most of the beam pipe in
all straights and arcs.

The first bunches of each mini-train have a
high luminosity, which drops to 40 % of its
initial value at the end of the longest train. The
long gaps clear the electron cloud, which
slowly builds up again over along the mini-
train. Solenoids had been installed in part of
the straights only.
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Interplay between e- - cloud & beam-beam issues (2)

o At high 17, e cloud strength varies along minitrain =>

o e" beam size varies (long range + within train) => Luminosity varies
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© e beam-beam tune-shift varies (=> e beam size may vary ??)

© tunes optimized on the average only =>
o slightL loss
@ ‘raining’ buckets (rapid loss of charge, background spikes, flip-flop)

© electron-cloud enhanced beam-beam blowup of the e* beam
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Interplay between e- - cloud & beam-beam issues (3)

QO Bunch pattern optimization: maximize 1 .., » taking into account
o total-current budget (RF power, beam-heating problems)
© minitrain spacing (larger minigaps => better e cloud suppression)
© minitrain length (shorter minitrains => less e cloud buildup)
o # of minitrains (fewer minitrains => fewer ‘fragile’ bunches)

© need for current ramps at start of train (and/or minitrains)

Q The severity of electron-cloud effects (for a fixed bunch pattern)
has been steadily decreasing over the years

o Low-field (25-35 G) solenoids now cover most of the accessible beam-
pipe sections. This system will be upgraded this summer (higher field)

© Vacuum-pipe scrubbing has clearly played a significant role

© Some e cloud effects are no longer apparent

© single-beam e” blowup at high I" no longer observed (but what once I'T ?)

© In typical recent running, only 1st (few) bucket(s) in each minitrain
affected by electron cloud
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Interplay between e- - cloud & beam-beam issues (4)

O Towards higher luminosities...

© impact of e- cloud may be more severe once higher currents force the
use of a denser pattern (‘by-2’, 4.2 ns spacing), and may become a
major limitation

@ parasitic crossings do matter! Cl(’”d

1 parasitic crossing
(@ minitrain edges
(instead of 2)
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R. Holtzapple, et. al.,
SLAC-PUB-9238 Beam-beam flip-flop

O Near the top of a fill:
LER Beam Size for 1st 5 Trains (10/23/01)
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O Single Bunch Transition
to low-luminosity state

©

©

Initially at average beam size

Luminosity dropped when rings
were filled

The bunch experiences a sudden
change in luminosity/beam size

This bunch went from one unstable
state (low luminosity / small x, y)
to the other unstable state (short
lifetime)

® Transition between states is fast
(~0.5 sec.)

© Horizontal beam size oscillation
accompanies the transition
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Beam-beam flip-flop (3)

O At some time it was possible to force
transitions between these states by tune
manipulations

O Possible Explanation of Beam Size Flip-Flop
Dynamics

© The LER bunches at the front of the train
have a smaller transverse beam size (lower
e electron cloud density). These small (strong)
Start of the store (high I): L/bunch LER bunches blow-up the HER bunches.
(almost) uniform throughout each train.

© The resulting tune shift (horizontal) for the
these LER bunches i1s smaller than “normal”,
and as a result, they have a horizontal tune
located near a resonance which gives them a
shorter lifetime.

Il Il © The LER bunches lose charge. Eventually the
HER becomes strong enough to flop itself,
and the LER bunch, back to “normal” size.

© To confirm this theory, a gated camera will be
installed in the HER.

End of the store (low 1): single-bunch L
dropouts are prevalent in the 15 few trains Beam-beam Workshop, Montauk, 19-23 May 03



Beam-beam limit studies

QO Experimental procedure
© Fix one beam current (typically similar to physics conditions)

© Vary the current of the other beam from 0 to maximum possible;
at each setting, optimize luminosity on tunes

individual beam sizes o~

© Measure L/bunch, specific luminosity L Xy

in- & out-of-collision

sp?’

O Diagnostics
© Fast luminosity monitor (e*e- = e*e"vy)
© Horizontal beam sizes: synchrotron-light monitor (SLM)

© Vertical beam sizes: SR-light interferometer
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W.K., PEP-II

HER b-b limit @ high e current: I =625 mA, I" = 100-1400 mA, 597 bunches Performance

Workshop, Dec 00
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HER b-b limit (continued)
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* LEB blowup in collision >>

, by an amount that depends on its own current => L, drops!
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LER b-b limit @high e* current: I" =1070 mA, I- =200-630 mA, 597 bunches
Luminosity/bunch Specific luminosity
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Wandering in tune space...

O LER
© -> Apr 03:
o v,=.64
% © v, =.56

© since May 1, 2003:
o v, =.52

// et )Xi" 0] Vy=.57

S e

0.6 0.55
X TUNE

The values quoted here are nominal, unshifted tunes

HER Tune Space Mu 5 = 0.0395

O HER

© -> Apr 03:
o v, =.57

Yo TUME

0 v, = .64

© since May 1, 2003:
o v, =.52

© v, = .62
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O Original tunes (v*,,, ~ 0.64/0.56)

> e-size ~ independent of e*
current

> e* size ~ T with T e* current
(mostly x: proximity to 2/3?)
O Near ”z integer (v*,, ~0.52/0.57)

> e Ssize T with T e* current

> e sizet with T e" current

> Specific luminosity

= scales (primarily) with
e* current

- => HEB the ‘weaker’ beam

> Total luminosity

= some tune-shift saturation
(prob. HEB), but potential for
more luminosity!
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Beam-beam simulations

Q Strong-stl"ong Y. Cai, et. al., Phys.Rev.ST Accel. Beams 4:011001,2001
S Y. Cai, SLAC-PUB-8811 (2001)
o particle-in-cell
@ 3-D: dynamically-tracked macroparticles in x+y; slices') in z

o solves Poisson’s equation in a reduced region (=> better accuracy in beam
core), with an ‘inhomogeneous’ boundary condition

© each ring
© 1-turn map

@ radiation damping & quantum excitation in normalized coordinates
o loops over a few damping times to reach equilibrium distributions

© not included:
@ rings: x-y coupling, machine imperfections & non-linearities
@ IP: bunch length, hourglass effect
© physics: e- cloud
O Parallel computing: macroparticles distributed on many processors

© 2 groups of processors: e*/e". Beam distributions are summed within each
group, then exchanged between the 2 processor groups

1 PEP-II example shown in this talk is effectively 2-d (single z-slice)
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Beam-beam simulations (2)
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Parameter  Description LER(e+) HER(e)
E (Gev) Beam energy 3.1 9.0
3% (cm) Beta X at the IP 50.0 50.0
By (cm) Beta Y at the IP 1.25 1.25
7 (turn) Transverse damping time 9740 5014
€; (nm-rad) Emittance X 24.0 48.0
¢, (nm-rad) Emittance Y 1.50 1.50
Vo X tune 0.649 0.209
Uy Y tune 0.564 0.639
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However:
- no e cloud effects have been included

- code needs to be confronted with a wider
parameter set




Beam-beam simulations (3)

0
0.54 0.56 0.58 086 0.62 0.64

Simulated vertical power spectra

(@ various beam intensities
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Vertical (top) & horizontal (bottom) average
tune shift as a function of bunch intensity,
for e (circles) and
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Tune spectra
(in collision, near 2 integer)
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J. Seeman,3 May 03

Beam-beam performance summary

Farameter LUnits 16-Apr-03 3-May-03| Farameter LUnits 16-Apr-03 3-May-03
High lumi Top of fill High lumi Top of fil
E+ el 31 3 Vaay (LER] 064 /056 0527057
E- el 4 9l Vs (HER) 0577064 0527063
Estimated from model or inferred from meas'mts Computed
Beta x + CITl 35 25 [+ 9 30E+10 g2.56E+10
Betay + CITl 1.2 1.1 - .04E+10 H.24E+10
Emit x + nm 40 23
Emit v + nm 4.4 14 Sig K+ microns 1183 107 5
Bunch length CIm 1.3 1.05 Sigy + microns 7.3 249
=g - microns 131.0 1417
Beta x - M 35 41 =gy - MICrons 4.9 £.0
Beta y - CIm 1.2 1.2
Emit x - Im 44 44 F (hourglass factor) 0.845 (.56
Emit v - nm 2 3.05
Bunch length CIm 1.3 1.25
Lum (calc) fem2is 5 21E+33 6.11E+33
Directly measured Tune shift x+ 0074 0.065
Num Bunch 939 939 Tune shift v + 0.068 0.048
I+ M, 1900 1750 Tune shift x- 0.056 0.075
I- M, 1030 1070 Tune shift vy - 0.031 0.060
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Summary

O Electron-cloud effects

© have been minimized by a combination of scrubbing, solenoid-
suppression, and bunch-pattern optimization;

o still play an ubiquitous role in the beam-beam performance of the
PEP-II B-factory;

© may constitute one of the fundamental limitations at higher luminosity.

O Luminosity (& background!) optimization relies on a delicate
balance between the currents, tunes, beam-beam parameters and
e-cloud effects as these parameters vary along each bunch train.

QO Spot-size, beam-current & luminosity diagnostics (both bunch-by-
bunch & averaging over an entire train) have proven essential to
unravel competing phenomena.

O Beam-beam simulations show encouraging agreement with
experiment, but more extensive comparisons are needed

Q PEP-Il has recently achieved, near the % integer, beam-beam
parameters &,/ &, of about .065 /.0438 (.075 /.060) in the LER (HER).
This is a significant increase in HER tune shift compared to the
previous working point.
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