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Single proton particle stability

with head-on beam-beam compensation in the RHIC

Y. Luo, W. Fischer and N. Abreu
Brookhaven National Laboratory, Upton, NY 11973, USA

To compensate the large tune shift and tune spread introduced by the head-on beam-beam interactions
in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy
electron beam with proper Gaussian transverse profiles to head-on collide the proton beam. In this article,
with weak-strong beam-beam interaction model, we investigate the stability of single proton particle in the
presence of head-on beam-beam compensation. Tune footprint, tune diffusion, Lyapunov exponent and
106 turn dynamic aperture are calculated and compared between the cases without and with beam-beam
compensations. Tune scan and possibility of increasing bunch intensity are also studied.

1 Introduction

To maitain collisional beam lifetime and proton polarization in the polarized proton (pp) run in the Rela-
tivistic Heavy Ion Collider (RHIC), current working points for the proton beams are constrained between 2/3
and 7/10. It has been shown by both experiments and simulations that when the fractional betatron tune is
close to 2/3, the beam lifetime will be affected by the strong third order betatron resonances. And when the
vertical tune is close to 7/10, both the luminosity lifetime and proton polarization will be hurt. The nominal
working points for the current pp runs are (28.685, 29.695) and (28.695, 29.685) for both RHIC rings. In the
2008 RHIC pp run, the bunch intensity had reached about 1.7×1011. To further increase the bunch intensity
to 2.0× 1011 or even higher, there will be no enough tune space between 2/3 and 7/10 resonances to hold
the large tune shift and tune spread generated by the proton-proton (p-p) head-on beam-beam interactions.

One solution is to adopt head-on beam-beam compensation. In the Tevatron at Fermi National Accel-
erator Laboratory, a low energy electron beam, usually called electron lens, or e-lens, has been introduced
into the ring to compensate the long-range beam-beam interactions. Experimentally the long-range beam-
beam compensation does increase the lifetime of PACMAN bunches in the bunch trains. In our study, we
investigate if a device like the Tevatron e-lens can be used to mitigate the head-on beam-beam effects in the
RHIC pp run.

To check the benefits and side effects from the head-on beam-beam compensation with e-lens in the
RHIC, detailed simulation studies have to be done. In 2005, preliminary simulation study did show that
e-lenses in the RHIC rings will greatly reduce the tune shift and tune spread generated by the p-phead-on
beam-beam interactions. However, more careful studies also have to be carried out to check its impacts on
the collisional lifetime and emittance evolution of the proton beam.

In this article, we report the results from the study of stability of single proton particles in presence of
head-on beam-beam compensation in the RHIC. We will first introduce the parameters of the proton and
electron beams and the lattice for this study, followed by the beam-beam interaction model and tracking
code we adopt. Then, we calculate and compare the tune footprint, tune diffusion and Lyapunov exponent
from short term trackings and 106 turn dynamic apertures between the cases without and with head-on
beam-beam compensations. In the end, we perform tune scan and check the possibility of increasing bunch
intensity. The cause of the tune footprint foldings and comparison of two poweful tools, tune diffusion
analysis and Lyapunov exponent analysis, are also shortly dicussed.

2 Beam parameters and weak-strong beam-beam model

For the RHIC pp run, the two proton beams collide at IP6 and IP8. The proton beam in the Blue ring
circulates clockwise, while the proton beam in the Yellow ring circulates anti-clockwise. In the current design
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of RHIC head-on beam-beam compensation, e-lenses are put close to the crossing point IP10. Fig. 1 gives
the layout the RHIC head-on beam-beam compensation.

Two e-lenses are needed for the RHIC head-on beam-beam compensation, one for the Blue ring and
another one for the Yellow ring. The two proton beams are vertically separated in the iteraction region (IR)
of IP10. The e-lens for the Blue ring is named BEL, and the e-lens for the Yellow ring is named YEL. They
are assumed 2 m long. They are symmetrically placed 1.5 meter away from IP10. However, in the following
simulations, for simplicity, we assume the e-lenses are exactly located at IP10.

Tab. 1 lists the proton beam parameters in this study. The proton energy is 250 GeV, the relativistic
factor is γ = 266. The beta functions at IP6 and IP10 are β∗x,y = 0.5 m. The beta functions at IP10 where
the e-lenses are are βex,y = 10 m. The beta functions at other crossing points (IP2, IP4, IP10) are 10 m.
In the simulation study, two uncollisonal working points, or nominal working points, (28.695, 29.685) and
(28.685, 29.695), are used. The linear chromaticities are set to Q′x,y = +1. The multipole magnetic field
errors in the triplet quadrupoles and separation dipole magnets in the IRs are included in the lattice.

The bunch intensity is chosen as Np = 2.0×1011. The proton beam rms transverse emittance is assumed
to be 2.5 mm·mrad (15 mm·mrad for the 95% emittance). The normalized rms longitudinal bunch area of
the proton beam is assumed to be 0.17 eV·s. The relative rms momentum spread of the proton beam is
δrms = (∆p

p0
)rms = 0.14× 10−3, the rms bunch length of the proton beam is σl = 0.44m.

For the best head-on beam-beam compensation, in this study we assume that the electron beam have
same transverse Gaussian profiles as that of the proton beam at IP10. For the full head-on beam-beam
compensation, the electron particle density is twice of that of proton bunch intensity, that is, Np = 4.0×1011.
For the half head-on beam-beam compensation, the electron particle intensity isNp = 2.0×1011. Full and half
head-on beam-beam compensations will compensate full and half linear beam-beam tune shifts, respectively.

In our following study, the 6-D simplectic tracking code SixTrack is used. In this code, the linear
elements are treated as thick elements while the nonlinear elements are treated as thin-lenses. The beam-
beam interaction calculation is based on weak-strong beam-beam interaction model. In our following study,
for simplicity and calculation speed, 4-D beam-beam kick á la Basetti and Erskine is used. The beam-beam
kicks from the electron beam on the proton particles are applied at IP10.

As a convention, we always launch initial particles for trackings in the first quadrant of (x/σx, y/σy)
plane. The initial conjugate momenta are set zero, px = py = 0. Initial coordinates of particles are sampled
uniformly between 0◦ to 90◦. In the calculations of tune footprints, tune diffusions and Lyapunov exponents,
the initial coordinates of particles are sampled uniformly from zero to 6σs. In dynamic aperture calculation
fast binary searching is adopted.

In the following study, we calculate 4-D tune footprint, 4-D tune diffusion and 6-D Lyapunov exponent
in 2048 turns to predicate the long-term stability of single proton particles. Limited by the computation
capacity and computation round error, direct tracking to check single particle’s long-term stability is carried
out up to 106 turn. We assume that the regular particle motion is bounded for ever and the chaotic particle
motion will diverge sooner or later. The long-term dynamic apertures will converge to the boundary between
the regular and chaotic motions.

3 Tune footprint calculation in 4-D tracking

The initiate motivation of adopting e-lens for the RHIC pp run is to compensate the head-on beam-beam
interaction generated tune shift and tune spread. The linear tune shift for the bunch core from p-p beam-
beam interaction at one IP is given by

ξ = −Npr0

4πεn
. (1)

Here Np is the number of proton particles per bunch. r0 is the classic radius of proton. εn is the normalized
rms transverse emittance. ξ is also called beam-beam parameter.

The nominal tunes without collision are (28.685, 29.695) and (28.695, 29.685). Assuming the transverse
normalized rms emittance εn = 2.5mm.mrad, the total beam-beam tune shift from two collisions at IP6 and
IP8 with Np = 2.0 × 1011 is about -0.02. Therefore, with Np = 2.0× 1011, the beam-beam tune shift will
push the beam with uncollisonal working point (28.685, 29.695) to horizontal third order resonance line and
push the beam with uncollisonal working point (28.695, 29.685) to vertical third order resonance line.

In this section, we calculate the tune footprints without and with beam-beam compensations. Initial
particles are launched in the (x/σx, y/σy) plane from 0σ0 to 6σs with step 0.1σ and from 5◦ to 85◦ with step
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Table 1: Parameters for the proton beams

quantity unit value
lattice
ring circumference m 3833.8451
energy GeV 250
relativistic γ - 266
beam-beam collision points - IP6, IP8
beam-beam compensation point - IP10
β∗x,y at IP6 and IP8 m 0.5
βex,y at IP10 m 10
β∗x,y at all other IPs m 10

proton beam
particles per bunch Np - 2× 1011

normalized transverse rms emittance εx,y mm·mrad 2.5
transverse rms beam size at collision points σ∗x,y mm 0.068
transverse rms beam size at e-lens σex,y mm 0.31
transverse tunes (Qx, Qy) - (28.695, 29.685)
chromaticities (ξx, ξy) - (1, 1)
beam-beam parameter per IP ξp→p - −0.01
longitudinal parameters
harmonic number - 360
rf cavity voltage kV 300
rms longitudinal bunch area eV·s 0.17
rms momentum spread - 0.14× 10−3

rms bunch length m 0.44

5◦. The initial conjugate momenta are set to zero, px = py = 0. Each particle is tracked to 2048 turns. The
betatron tunes are calculated with Sussix.

The top-left plot in Fig. 2 shows the footprints of on-momentum particles without and with head-
on beam-beam interactions for both nominal working points. The footprints above the diagonal are for
uncollsional working point (28.685, 29.695) and the footprints below diagonal is for uncollisional working
point (28.695, 29.685). Different colors in Fig. 2 show the range of initial amplitudes. From the top-left
plot of Fig. 2, with beam-beam interactions at IP6 and IP8, the beam with uncollisional working point
(28.685, 29.695) is pushed onto horizontal third order resonances, while the beam with uncollisional working
point (28.695, 29.685) is pushed onto vertical third order resonances. The beam-beam interactions also
generate a much larger tune spread than the nonlinear magnetic fields.

The top-right plot in Fig. 2 shows the footprints of on-momentum particles with half and full head-on
beam-beam compensations for both nominal working points. From the top- right plot in Fig. 2, the full and
half head-on beam-beam compensation compensate full and half beam-beam tune shift. With head-on beam-
beam compensation, the tune spreads generated by the proton-proton interactions are also greated reduced.
The particles in the bunch cores are pulled away from the third order betatron resonance lines. With full
head-on beam-beam compensations, tune spreads are alomst comparable to that without any beam-beam
interaction.

In the top-right plot of Fig. 2, foldings in the tune footprints in radial and azimuthal directions are
noticed, especially for the case with full beam-beam compensations. Without beam-beam interaction, there
is no tune footprint folding up to 6σs. Only with p-p beam-beam interactions at IP6 and IP8, the tune
footprint folding happens beyond 5σs. With half beam-beam compensation, it happens at 4σs. With full
beam-beam compensation, the tune footprint foldings starts from a very small amplitude and the folding
happens in both radial and azimuthal directions.

The two bottom plots in Fig. 2 show the tune footprints for the off-momentum particles. The relative
momentum deviation is δp = ∆p

p0
= 0.0005 which is 3σp/p0. In our calculation, the first order chromaticities

are set to Q′x,y = +1. There is no significant difference in the shapes of tune footprints between on- and
off-momnentum particles.

In this section, we verified that head-on beam-beam compensations can greatly reduce the p-p beam-beam
interactions generated large tune shift and tune spread. However, with head-on beam-beam compensations,
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tune footprint foldings happen earlier at lower amplitudes, comparing to the case without beam-beam com-
pensation. The cause and effect of beam-beam generated tune footprint foldings will be discussed later.

4 Tune diffusion calculation in 4-D tracking

In this section, we calculate and compare 4-D tune diffusion for on-momentum particles without and with
beam-beam compensations. Tune diffusion analysis, or more generally called frequency map analysis, has
been used for the study of single particle stability since J. Laskar introduced it from galaxy system into
Accelerator Physis. Tune diffusion from short-term tracking is used as an indicator of long-term particle
stability. If the particles motion is regular, its tune diffusion will be small. And if the particle motion is
chaotic, its tune diffusion will be large. Normally tune diffusion is calculated in a 4-D tracking.

In our study, the initial particle coordinates are sampled uniformly from 0σ0 to 6σs with 0.1σ and from
1◦ to 89◦ with step 1◦ in the (x/σx, y/σy) plane. The initial conjugate momenta are set to zero, that is,
px = py = 0. Each particle is tracked up to 2048 turns. The betatron tunes are calculated in the first and
second 1024 turns. The tune diffusion in the 2048 turn is defined as

|∆Q| =
√
|∆Qx|2 + |∆Qy|2. (2)

|∆Qx| and |∆Qy| are the horizontal and vertical betatron tune differences between the first and second 1024
turns. Again in our study, the tunes are accurately evaluated with Sussix.

The tune diffusion can be shown both in (x/σx, y/σy) plane and (Qx −Qy) tune plane. Different colors
show the orders of tune diffusions. In our study, deep and light blue dots means that the particles they
represent have tune diffusion below 10−5 and are considered very stable. The back dots mean the particles
they represent have larger than 10−2 tune diffusions. These particles are subject to lose in a long-term
tracking. The particles represented by the green and yellow dots are between the very stable and unstable
cases.

Fig. 3 and Fig. 4 show the tune diffusions of on-momentum particles for working point (28.685, 29.695)
and (28.695, 29.685) in the (x/σx, y/σy) plane, respectively. In both figures, the top-left and top-right
plots show the tune diffusions for the cases without and with p-p beam-beam interactions, respectively.
The bottom-left and bottom-right plots show the tune diffusions for the cases with half and full head-on
beam-beam compensations, respectively.

From Fig. 3 and Fig. 4, without beam-beam interactions, the tune diffusions for particles below 6σs are
below 10−4. There is a large continuous deep and light blue area from zero to 4σs. With p-p beam-beam
interactions on, the large continuous blue area disappear. And several yellow curves with tune diffusion from
10−4 to 10−3 show up from zero up to 4-5σs. Beyond 4-5σs, there is a area scattered by some small yellow
spots.

From Fig. 3 and Fig. 4, with head-on beam-beam compensations on, the tune diffusions for particles
below 3σs are reduced comparing to that without compensation. A small continuous blue area appears from
zero up to 2-3σs. With half beam-beam compensations, one or two green cures instead of yellow curves are
visible below 3σs. With full beam-beam compensation, the area above 4σs with mixed colors ( black, yellow
and green colors) expands. More black dots are seen for the cases with beam-beam compensations.

The curves in yellow and green in Fig. 3 and Fig. 4 are actually linked to resonance structures. In Fig. 5,
we plot the same tune diffusions in (Qx, Qy) tune space. Zooming into the tune footprints with half beam-
beam compensation in Fig. 5, same resonances are visible before and after tune footprint foldings. Before
foldings, the resonance line is colored in green with tune diffusion between 10−5 to 10−4 . After foldings,
the same resonance line turns to back with tune diffusion above 10−2. It is an evidence that foldings in the
tune footprint should be avoided.

In Fig. 5, with p-p beam-beam interactions, the resonances are visible at low amplitudes. These yellow
curves or resonances seem not to cause actual particle loss. With full beam-beam compensation, crossings of
yellow curves are visible from very small amplitude. These resonance crossings produce the color-mixed area
in Fig. 3 and Fig. 4. According to [], resonance crossing in the (Qx, Qy) plane , or resonance overlapping in
(x− px), (y− py) phase spaces indicate chaotic boundary. Below chaotic boundary is the so called dynamic
aperture. Above the chaotic boundary, particles will lose sooner or later.

To conclude, from the tune diffusion analysis, head-on beam-beam compensations will help reduce the
tune diffusions of particles below 3σs. However, with beam-beam compensations, especially with full beam-
beam compensation, resonance crossing or resonance overlapping happen earlier which reduces the boundary
between the regular and chaotic motions and therefore the dynamic aperture.
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5 Lyapunov exponent calculation in 6-D tracking

Lyapunov exponent is another indicator of single particle’s long-term stability. By launching two adjacent
particles with small enough distance in the phase space, the distance between these two particles will grow
linearly or exponentially. The evolution pattern of the distance between these two particles in a short term
tracking can be used to judge single particle’s long-term stability.

According to Ref.[?], the maximal Lyapunov exponent in nth turn is defined as

λ(n) =
1

n
ln
|X2(n)−X1(0)|

d0
. (3)

Xi(N), i=1,2, is the coordinate vectors of the two particles in the nth turn. The initial distance of these two
particles in the phase space is |X2(0)−X1(0)| = d0. d0 should be originally very small to make the analysis
meaningful. If the particle motion is regular or stable, the distance will grow linearly, and λ(n) tends to
zero. If the motion is chaotic or unstable, the distance of these two particles will grows exponentially and
λ(n) converges to a positive value.

In SixTrack, these two particles are called ’twin particles’. The difference in the twin particles’ initial
coordinates can happen in any directions of (x, px, y, py, c∆t, δp) phase space. In our study, the coordinate
of first particle is uniformly sampled in the (x/σx, y/σy) plane with zero conjugate momentum px = py = 0,
from 0σ0 to 6σs with step 0.1σ and from 1◦ to 89◦ with step 1◦. The second particle’s coordinate differ from
that of the first particle in x and y by 0.707e-06mm. Then, the initial distance d0 = 10−6mm. Particles are
tracked to 2048 turns. In our study, the longitudinal motion is turned on. However, for simplicity, we only
calculate the maximal Lypunov exponent in transverse planes.

As an example, Fig. 6 shows the distances and the maximal Lypunov exponents for the regular and
chaotic motions. The two top plots show the distances and the two bottom plots show the maximal Lypunov
exponents. The two left plots are for the regular motion. The two right plots are for the chaotic motion.
From Fig. 6, the distance of the twin particles for the regular motion growth linearly and steadily. Its
maximum Lyapunov exponent continues going down in 2048 turns. For the chaotic motion, the distance of
the twin particles grows much faster and non-linearly. Two exponential growths are seen between 500-1200
turns and between 1600-2048 turns. As a result, its maximum Laypunov exponent converge to a possible
number in these parts. For simplicity, in the following, instead of showing λ(n)’s slope, we will plot λ(2048)
in the (x/σx, y/σy) plane, which we call Lyapunov exponent map.

Fig. 7 and Fig. 8 show the maximum Laypunov exponents in the (x/σx, y/σy) plane for working points
(28.685, 29.695) and (28.695, 29.685), respectively. In Fig. 7 and Fig. 8, the top-left and top-right plots show
the maximum Laypunov exponents without and with beam-beam interactions, respectively. The bottom-left
and bottom-right plots show the maximum Laypunov exponents with half and full beam-beam compensa-
tions, respectively. In each plot, dots with different colors show different ranges of λ(2048). For example, the
deep and light blue dots show the particles having λ(2048) below 0.001. These particle motions are likely
stable in long term tracking. The back dots show the particles with larger λ(2048) than 0.003 and their
motions are chaotic in a long-term tracking.

From top plots of Fig. 7 and Fig. 8, without beam-beam interactions, particles below 3σs are very stable.
Pink dots are only seen beyond 5σs. There is no black dots up to 6σs. With p-p beam-beam interactions
on, pink and red dots occupy the area from 1σ to 4.5σs. Below 1σ, some red dots are also visible there.
Beyond 4.5σs, the area is filled with dots with different colors. Interestingly similar resonance curves from
tune diffusion map are visible in the Lyapunov exponent map. Several black dots appear on the edges of
these resonance strips.

From bottom plots of Fig. 7 and Fig. 8, with half head-on beam-beam compensations, the bunch core
get more stable comparing to that without compensation. The pink dots dominate the area from 2σs to
3σs in the (x/σx, y/σy) plane. With full beam-beam compensations, pink and read color dots are moved
up from 3σs. Therefore, with half and full beam-beam compensation, the particles with small amplitudes
get more stable than in the case of without compensation. However, it is noticed that with full beam-beam
compensation, especially for working point (28.685, 29.695), there are more black dots appear above 4σs.
These black dots gather on a wide resonance strip.

From the analysis of Laypunov exponent maps, similar conclusion can be drawn as that from the above
tune diffusion analysis. The head-on beam-beam compensation helps stabilize particles below 3σs but hurts
particles beyond 4σs. With full beam-beam compensation, the boundary between the regular and chaotic
motion is reduced to about 4σs.
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6 Dynamic aperture calculation in 6-D tracking

In this section we calculate 6-D dynamic apertures without and with head-on beam-beam compensation.
The dynamic aperture (DA) is defined as the maximum phase-space amplitude within which particles do not
get lost in a certain tracking turn as a sequence of single-particle dynamic effects. The long-term dynamic
aperture is supposed to converge to the boundary between the regular and chaotic motions. However, limited
by computation capacity and computation wrong error, direct particle tracking beyond 107 seems difficult.

In the following, we search dynamic apertures in the (x/σx, y/σy) plane in 106 turn tarckings . The
initial particles are sampled from 5◦ to 85◦ with step 5◦, and from zero to 12σs with amplitude step 0.2σ.
The particle’s initial conjugate momenta are set to zero, px = py = 0. The longitudinal motion is on in this
study.

There are some small difference in the dynamic apertures among the phase angles in the (x/σx, y/σy)
plane. To simplify comparison, we focus on the minimum dynamic aperture Dmin and the phase averaged
dynamic aperture Davg among these phase angles. The phase averaged dynamic aperture is defined as

Davg = (

9∑

i=1

D(αi)
4 sin(2αi)∆α)

1
4 . (4)

D(αi) is the dynamic aperture in phase space direction αi, ∆α is angle step among the phase angles.
Fig. 9 shows 106 turn dynamic apertures for both working points under different conditions. The top-left

and top-right plots show the 106 turn dynamic apertures with the collisional working point (28.685, 29.695).
The bottom-left and bottom-right plots show the 106 turn dynamic apertures with the uncollisional working
point (28.695, 29.685). Alternatively, Fig. 10 shows dynamic apertures with same beam-beam conditions
for different working points. The top-left and top-right plots show the dynamic apertures without and with
beam-beam, respectively. The bottom-left and bottom-right plots show the dynamic apertures with half and
full beam-beam compensations, respectively.

Table. 9 lists the 106 turn dynamic apertures found in each phase angle and the minimum and phase-
averaged dynamic apertures among these 9 angles. According to Table. 9, for the same beam-beam con-
ditions, the dynamic apertures for on- and off-momentum particles are slightly different. The differences
normally are less 0.5σ. The relative momentum deviation for off-momentum particles is δp/p0 = 0.0005. In
the following, we focus on the comparison of the dynamic apertures for off-momentum particles.

From Table. 9, for off-momentum particles, the minimum and angle averaged dynamic apertures without
beam-beam inetartcion are about 7.6σs and 8.5σs for the working point (28.685, 29.695), and are about
8.0σs and 8.8σs for the working point (28.695, 29.685). With the beam-beam interactions at IP6 and IP8,
the minimum and angle averaged dynamic apertures drop about 2σs.

With head-on beam-beam compensations, for off-momentum particles, both minimum and angle aver-
aged dynamic apertures are reduced, comparing to that without compensation. For working point (28.685,
29.695), the minimum and angle averaged dynamic apertures drop by 0.7σ and 0.3σ with half beam-beam
compensation and drop by 1.1σ and 0.7σ with full beam-beam compensation, respectively. For working
point (28.695, 29.685), the minimum and angle averaged dynamic apertures drop by 0.3σ and 0.1σ with
half beam-beam compensation and by 0.3σ and 0.3σ with full beam-beam compensations. Therefore, with
head-on beam-beam compensation, we see more dynamic aperture drops for working point (28.685, 29.695)
than that for working point (28.695, 29.685).

To conclude, 106 turn dynamic aperture reduction is seen with head-on beam-beam compensations. This
coincides with the above qualitative analysis with short-term tune diffusion and Laypunov exponent. The
dynamic apertures are linked to the boundary between the regular and chaotic particle motions in a long-
term tracking. Dynamic aperture doesn’t tell how stable the survived particles are. The drop in the dynamic
aperture with head-on beam-beam compensation does hint the actual beam lifetime will be hurt.

7 Dynamic apertures in tune scan

In this section, we continue to calculate 106 dynamic apertures with beam-beam compensation in a tune
scan. The tune scan is carried out along the diagonal in the tune space and the step of tune change is 0.005.

With half head-on beam-beam compensation, we calculate dynamic apertures for working points (28.685,
29.695) and (28.680, 29.690) above diagonal and for working points (28.695, 29.685) and (28.690, 29.680)
below diagonal. With full head-on beam-beam compensation, we calculate dynamic apertures for working
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Table 2: Dynamic apertures in 106 turn trackings

Case D(5) D(15) D(25) D(35) D(45) D(55) D(65) D(75) D(85) Dmin Davg

WP685695-dp0:
NoBB 9.3 9.3 8.0 8.2 7.9 7.3 8.4 9.0 9.2 7.3 8.3
BB 6.5 6.4 5.9 6.1 6.5 6.5 5.7 7.1 7.1 5.7 6.4
HBBC 6.3 7.9 6.0 5.6 6.2 6.0 5.8 6.0 6.8 5.6 6.2
FBBC 6.3 6.3 6.1 5.7 5.5 5.1 4.6 6.2 6.0 4.6 5.7
WP685695-dp5:
NoBB 8.0 8.2 8.4 8.7 8.2 7.6 8.0 9.9 10.3 7.6 8.5
BB 6.6 6.4 6.5 6.8 6.9 6.4 6.5 8.0 7.7 6.4 6.8
HBBC 6.6 6.6 6.5 6.5 6.0 6.5 5.7 6.8 8.2 5.7 6.5
FBBC 6.4 6.6 6.4 6.1 5.3 5.7 5.8 6.8 6.7 5.3 6.1
WP695685-dp0:
NoBB 10.1 8.8 8.0 7.3 8.0 8.4 8.2 7.8 9.0 7.3 8.2
BB 9.3 7.1 6.9 5.6 5.4 5.7 7.3 6.5 6.1 5.4 6.5
HBBC 9.2 7.2 6.5 5.6 5.7 5.7 7.1 6.5 6.1 5.6 6.5
FBBC 9.0 6.6 5.4 5.3 5.5 5.7 5.7 6.3 5.7 5.3 5.9
WP695685-dp5:
NoBB 10.5 8.6 8.8 8.0 8.8 9.2 8.8 8.6 8.4 8.0 8.8
BB 9.8 7.7 6.9 6.1 6.1 6.2 7.2 7.2 6.8 6.1 6.9
HBBC 9.5 7.3 6.6 5.8 6.5 6.2 6.9 7.1 6.9 5.8 6.8
FBBC 10.1 7.1 6.0 6.0 6.1 5.8 7.1 6.7 6.9 5.8 6.6

points (28.685, 29.695), (28.680, 29.690) and (28.675, 29.685) above diagonal and for working points (28.695,
28.685), (28.690, 28.680) and (28.685, 28.675) below diagonal.

Fig. 11 and Fig. 12 show the dynamic apertures in the tune scan with half and full head-on beam-
beam compensations, respectively. Table. 3 list all the calculated dynamic apertures in the tune scan. For
each working point, dynamic apertures are calculated for on- and off-momentum particles. The relative
momentum deviation for off-momentum particles is ∆p/p0 = 0.0005.

From Fig. 11 and Table. 3 , with half head-on beam-beam compensation, there are very small changes in
the phase averaged dynamic apertures in the tune scan. These changes are typically less than 0.2σs, which is
close to the resolution in our dynamic aperture searching. The difference in the minimum dynamic apertures
are also small in the tune scan. In most cases, the minimum dynamic apertures differ by 0.1σ, expect for
the off-momentum particles in the above diagonal scan which gives 0.3σ change.

With full head-on beam-beam compensation, the changes in the tune scan in the phase averaged dynamic
apertures are around 0.1σ in the tune scan. The only higher average dynamic aperture is for the on-
momentum particle with working point (28.690, 29.680), which gives 6.3σs. The minimum of the minimum
dynamic apertures is given by the on-momentum particle with working point (28.685, 29.695). To conclude
this section, there is no clear change in the 106 turn dynamic apertures in the above tune scans. In our tune
scane, the lower tunes are all above 0.675.

8 Possibility of bunch intensity Np = 3.0× 1011

In the section we check the possibility of increasing bunch intensity. In the following, we assume the bunch
intensity Np = 3.0× 1011 which gives about −0.03 beam-beam tune shift from p-p interactions at IP6 and
IP8. We compensate two-third of the total p-p beam-beam tune shift with e-lens which gives the final
beam-beam tune shift about −0.01. For the 2/3 head-on beam-beam compensation for Np = 3.0× 1011, the
required electron beam intensity from e-lens is 4.0 × 1011, which is the same to that with full beam-beam
compensation with Np = 2.0×1011. If there is no significant proton beam lifetime drop with bunch intensity
Np = 3.0× 1011 and 2/3 head-on beam-beam compensation, the luminosity will be doubled.

Fig. 13 and Fig. 14 shows the tune footprint, tune diffusion, Lyapunov exponent and dynamic aperture
for working point (28.685, 29.695) and (28.695, 29.685) with bunch intensity Np = 3.0×1011 and 2/3 head-on
beam-beam compensation, respectively. Table. 4 lists the calculated 106 turn dynamic apertures.

From Fig. 13 and Fig. 14, with bunch intensityNp = 3.0×1011 and 2/3 head-on beam-beam compensation,
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Table 3: 106 turn dynamic apertures in the tune scan

Case D(5) D(15) D(25) D(35) D(45) D(55) D(65) D(75) D(85) Dmin Davg

Half BBC, above diagonal:
WP685695-dp0 6.3 7.9 6.0 5.6 6.2 6.0 5.8 6.0 6.8 5.6 6.2
WP680690-dp0 6.6 6.5 6.5 6.6 5.7 5.5 6.2 6.9 7.2 5.5 6.3
WP685695-dp5 6.6 6.6 6.5 6.5 6.0 6.5 5.7 6.8 8.2 5.7 6.5
WP680690-dp5 6.9 6.8 6.5 6.3 6.1 6.0 5.3 6.9 7.9 5.3 6.4
Half BBC, below diagonal:
WP695685-dp0 9.2 7.2 6.5 5.6 5.7 5.7 7.1 6.5 6.1 5.6 6.5
WP690680-dp0 8.4 7.2 5.8 5.5 6.5 6.8 7.2 6.6 6.1 5.5 6.6
WP695685-dp5 9.5 7.3 6.6 5.8 6.5 6.2 6.9 7.1 6.9 5.8 6.8
WP685680-dp5 10.2 6.6 5.7 6.3 6.2 6.9 7.9 7.2 6.9 5.7 7.0
Full BBC, above diagonal:
WP685695-dp0 6.3 6.3 6.1 5.7 5.5 5.1 4.6 6.2 6.0 4.6 5.7
WP680690-dp0 6.5 6.4 6.0 5.8 5.2 5.6 5.3 6.0 6.6 5.2 5.8
WP675685-dp0 6.5 6.4 6.3 5.8 5.2 5.5 5.2 5.9 6.2 5.2 5.8
WP685695-dp5 6.4 6.6 6.4 6.1 5.3 5.7 5.8 6.8 6.7 5.3 6.1
WP680690-dp5 6.9 6.8 6.2 5.9 5.7 6.1 6.0 5.7 7.4 5.7 6.1
WP675685-dp5 6.9 6.8 6.7 6.2 5.5 5.5 5.9 6.4 7.6 5.5 6.2
Full BBC, below diagnoal:
WP695685-dp0 9.0 6.6 5.4 5.3 5.5 5.7 5.7 6.3 5.7 5.3 5.9
WP690680-dp0 8.2 6.6 5.5 5.6 5.8 6.1 7.1 6.5 6.0 5.5 6.3
WP685675-dp0 8.0 6.3 4.9 5.3 5.4 6.3 6.5 6.2 5.8 4.9 6.0
WP695685-dp5 10.1 7.1 6.0 6.0 6.1 5.8 7.1 6.7 6.9 5.8 6.6
WP690680-dp5 7.6 6.2 6.4 5.2 5.7 6.2 7.8 7.2 6.9 5.2 6.5
WP685675-dp5 7.6 6.0 5.7 5.9 6.2 6.8 7.3 6.9 6.7 5.7 6.5

Table 4: 106 turn dynamic apertures with bunch intensity 3.0× 1011

Case D(5) D(15) D(25) D(35) D(45) D(55) D(65) D(75) D(85) Dmin Davg

WP685695-dp0 6.1 6.1 5.6 5.4 5.4 5.4 5.7 5.7 5.6 5.4 5.6
WP685695-dp5 6.5 6.4 6.0 5.4 6.1 5.8 5.7 5.5 6.8 5.4 5.9
WP695685-dp0 9.3 6.3 5.7 5.1 5.5 5.4 6.1 6.2 5.8 5.1 6.0
WP695685-dp5 7.1 7.2 5.8 5.2 6.1 6.0 6.3 6.6 6.5 5.2 6.2

the beam-beam generated tune shifts are about 0.01. However, tune footprint foldings happen in both radial
and azithmal diretctions from very small particle amplitudes. From tune diffusion and Lyapunov exponent
calculation, the black dots which represent irregular particle motions are seen starting from 2.5σs.

From Table. 4, the 106 turn dynamic apertures for Np = 3.0× 1011 and 2/3 beam-beam compensation
drop some, comparing to that for the nominal full beam-beam compensation shown in Section 6. For
example, ....

To conclude this section, with increased bunch intensity Np = 3.0 × 1011 and 2/3 head-on beam-beam
compensation, the 106 turn dynamic aperture has a slight drop comparing to the nominal compensation
scheme with bunch intensity Np = 2.0× 1011 and full beam-beam compensation. We expect more drop in
the dynamic apertures in this case in extended tracking.

9 Cause for tune footprint folding

In this section we discuss the cause of tune footprint foldings. As an example, we calculate and show the
horizontal tune shifts versus amplitude, or horizontal detunings, for on-momentum particles with working
point (28.685, 29.695). All the detunings shown below are given with respect to the tunes for zero-amplitude
particle.

The top-left plot in Fig. 15 shows the horizontal detuning only from the nonlinear magnetic fields. The
top-right plot in Fig. 15 shows the detuning only from p-p beam-beam interactions at IP6 and IP8. The
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proton bunch intensity is Np = 3.0×1011. From them, there is no clear tune foldings in horizontal detuning in
all phase angles. The detuning monopoly increase or decrease with the particle amplitude. This means that
only nonlinears from the lattice or only p-p beam-beam interaction will not cause tune footprint foldings. We
notice that the detuning from p-p beam-beam interactions increases much slowly and tend to get saturated
after 5− 6σs due to the fact that the particles beyond 5− 6σs see less beam-beam force.

When the nonlinear magnetic fields from lattice and the beam-beam interaction are both turned on, if
we simply add their detunings together, the total detunings are likely to fold sooner or later depending on
how big the detuning from nonlinear magnetic fields is. If the detuning from nonlinear magnetic fields is big
and the the beam-beam detuning is small (for example, with low bunch intensity), the tune footprint folding
will come sooner. If the detuning from nonlinear magnetic fields is small and the beam-beam detuning is
big, the tune footprint folding will happen later.

Another point is that the p-e head-on beam-beam compensation will complicate the situation. For
example, with head-on beam-beam compensation in our case, the tune footprint foldings can happen only
with p-p beam-beam interactions and p-e beam-beam compensation even without nonlinears in the lattice.
With beam-beam compensation, together with nonlinears from lattice, tune footprint foldings are likely
happen at a smaller particle amplitude.

Tune footprint foldings can happen in the azimuthal as well as in the radial directions in the (x/σx, y/σy)
plane. As an example, the bottom-left and bottom-right plots in Fig. 15 show the detunings with Np =
3.0 × 1011 and 2/3 head-on beam-beam compensation in the radial and azimuthal directions, respectively.
The foldings in the azimuthal direction is mainly caused by the different detunings from nonlinear magnetic
fields in different phase angles. In our case, since the betas at IP10 and transverse emittances are very close,
the detunings only from bema-beam interactions shouldn’t give big difference in different phase angles.

To conclude, the tune footprint folding is caused by the beam-beam interactions together with the
nonlinear magnetic fields. With head-on beam-beam compensation it will happen at smaller amplitude. It
is not clear whether the tune footprint folding will happen only with nonlinear magnetic fields for the strong
nonlinear lattice. It is also not clear to us how harmful the tune footprint folding will be. One evidence
is that tune footprint foldings give opportunity to the resonance crossing and overlapping which should be
avoided in the beam-beam study. Resonance crossing and overlapping normally hint the boundary between
the regular and chaotic motions.

10 Tune diffusion map and Lyapunov exponent map

In the above studies, both tune diffusion and Lyapunov exponent in short term tracking are used as indicators
of long-term stability of single proton particles. In this section, we will compare these two powerful tools.

Actually Lyapunov exponent has long been widely used to characterize the regular and chaotic motion.
Lyapunov exponent analysis assumes that the distance between two particles originally very close in the
phase space will increase linearly or exponentially depending on the motion is regular or chaotic. It can be
used in 4-D or 6-D trackings. The resolution of this method is determined by the round-error in the tracking
process. The tune diffusion analysis was introduced from galaxy system by Laskar in the late 1990’s. This
method depends on the accurate tune determination methods. It assumes that the more stable motion is, the
less change in the betatron tunes. It is normally used in 4-d tacking since longitudinal motion will disturb
the betatron tune evaluation.

From Section 4 and Section 5, both tune diffusion map and Lyapunov exponent map reveal the
resonance curves in the case of only with p-p beam-beam interactions at IP6 and IP8. The tune diffusion
analysis is more powerful than the Lyapunov exponent to reveal resonance structures. Tune diffusion also
discover resonance crossing or overlapping in the case of full beam-beam compensations.

Lypunov exponent is sensitive to the diffusion in the spatial space. By tracking two particles originally
very close in the space space, it directly tell the stability of particles in a long-term tracking. For example,
in Lyapunov exponent map for the case of with full beam-beam compensation, the particles colored will
back will lose sooner or later. Lyapunov exponent tell the result whether the particle will lose in a long-term
tracking while the tune diffusion tells the reason why the particle motion is stable or chaotic.

However, at some time tune diffusion and Lyapunov exponent tell different story. For example, in the case
of only with beam-beam compensation, below 4σs, the particles in the center of resonance stripes have larger
tune diffusions than particle on the edges of resonance strips. While from Lyapunov exponent component
analysis, the particles in the center of resonance stripes have smaller Lyapunov exponents than that on the
edge of the resonance strips. And in the Lyapunov exponent map, there is a larger red colored area around
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coordinate (2, 2) in the (x/σx, y/σy) plane, while in the tune diffusion map these areas are colored with blue.
This example shows that resonance sometime will not cause direct particle loss, especially for resonances at
low amplitudes.

To conclude, tune diffusion is sensitive to the diffusion in the frequency domain while Lyapunov exponent
is sensitive in the diffusion in the spatial domain. The tune diffusion analysis is more powerful than Lyapunov
exponent to reveal resonance structures. However, Lyapunov exponent is the only one quantity to directly
tell whether the particle will lose or not in a long-term tracking. And Lyapunov exponent can also be used
in medium-term tracking while tune diffusion is mostly limited to short-term tracking. We suggest that both
powerful methods should be used in the particle’s long-term stability predication since Lyapunov exponent
analysis tells the result while the tune diffusion analysis tells the reason.

11 Discussion

In the article, we calculated and compared the stabilities of single proton particles without and with head-on
beam-beam compensation. From the calculated tune footprints, it is clear to show that head-on beam-beam
compensation is very effective to reduce the p-p beam-beam generated large tune shift and tune spread.

Tune diffusion and Lyapunov exponent from 2048 turn tracking are used as indicators of long-term
stability of single particle. Both studies show that head-on beam-beam compensation will stabilize the
particles below 3σs. This is understood since head-on beam-beam compensation reduces the tune shifts and
pulls the particles in bunch core away from strong third order betatron resonances. And the particles in the
bunch cores see less nonlinear effects introduced by the head-on beam-beam compensations.

Analysis of tune diffusion and Lyapunov exponent also show that head-on beam-beam compensation
will hurt the stability of particles above 4σs. Head-on beam-beam compensation cause the early happening
of tune footprint foldings and earlier happening of resonance crossings or overlappings. Therefore, head-
on beam-beam compensation reduces the boundary between regular and chaotic motions. This fact can
be explained that head-on beam-beam compensation introduces more nonlinear forces into single particle
dynamics in the range of 1σ to 5− 6σs. Below 6σs, beam-beam effect gets weaker.

Limited by computation capacity and computation round error, 106 direct trackings are performed to
search the so-called dynamic aperture. The dynamic aperture in a long-term tracking will eventually converge
to the boundary between the regular and chaotic motions. Below that boundary, particle motion is bounded
for ever. Above the boundary, particles are subject to lose sooner or later. In this study, we do see there are
drops in the 106 turn dynamic apertures with head-on beam-beam compensation, comparing to that without
beam-beam compensation.

In the article, we didn’t check the stability of particles with small amplitudes through direct tracking. It
is conjectured that the dynamic aperture is related to the real beam lifetime and the stability of the particles
below 4σs will decide the real emittance growth rate. Beam lifetime and emittance growth are being studied
with multi-particle tracking where about 104 macro-particle with 6-D Gaussian distributions are tracked up
to 107 turns. Results will be reported in another article.

12 Conclusion

The stability of single proton particles in presence of head-on beam-beam compensation in the RHIC is stud-
ied carefully. Besides head-on beam-beam compensation can greatly reduce the p-p beam-beam interactions
generated tune shift and tune spread, it also help stabilize the particles below 4σs since it pulls the particles
in the bunch core away from strong third order resonances. However, we found that head-on beam-beam
compensation will reduce the boundary between the regular and chaotic motions and therefore to reduce the
overall beam lifetime. It is not clear at this moment how the head-on beam-beam compensation affect the
bunch emittances, which is been studied with multi-particle trackings.
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Figure 3: Tune diffusion maps of on-momentum particles for working point (28.685, 29.695): Top-left:
without BB; Top-right: with BB; Bottom-left: with BB and half BB compensation; Top-right: with BB and
full BB compensation.
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Figure 4: Tune diffusion maps of on-momentum particles for working point (28.695, 29.685): Top-left:
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Figure 5: Tune diffusion maps of on-momentum particles in tune space for both working points: Top-left:
without BB; Top-right: with BB; Bottom-left: with BB and half BB compensation; Top-right: with BB and
full BB compensation.
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Figure 7: Lyapunov component maps of on-momentum particles for working point (28.685, 29.695): Top-left:
without BB; Top-right: with BB; Bottom-left: with BB and full BB compensation; Top-right: with BB and
half BB compensation.
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point (28.685, 29.695); Top-right: off-momentum particle with working point (28.685, 29.695); bottom-left:
on-momentum particle with working point (28.695, 29.685); bottom-right: off-momentum particle with
working point (28.695, 29.685).
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Figure 10: Comparing 106 turn dynamic apertures. Top-left: without beam-beam; Top-right: with beam-
beam interactions at IP6 and IP8; bottom-left: with beam-beam interactions at IP6 and IP8 plus half
beam-beam compensation at IP10 ; bottom-right: with beam-beam interactions at IP6 and IP8 plus full
beam-beam compensation at IP10 .
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Figure 11: Tune scan with BB-HBBC.
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Figure 12: Tune scan with BB-HBBC.
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Figure 13: Tune footprint, Tune diffusion, Lyapunov exponent, and dynamic apertures with Np = 3.0×1011

and 2/3 BBC for working point (28.685, 29.695).
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Figure 14: Tune footprint, Tune diffusion, Lyapunov exponent, and dynamic apertures with Np = 3.0×1011

and 2/3 BBC for working point (28.695, 29.685).
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Figure 15: Examples of tune footprint foldings, working point is (28.685, 29.695). Top-left: detuning ∆Qx

only from magnetic nonlinears; Top-right: detunning ∆Qx only from beam-beam interaction; Bottom-left:
radial detunning ∆Qx with Np = 3.0 × 1011 and 2/3 head-on beam-beam compensation ; Bottom-right:
azimuthal detunning ∆Qx with Np = 3.0× 1011 and 2/3 head-on beam-beam compensation.
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