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Tucson: Home of the truly macroscopic wavefunctions

Figure: A Saguaro cactus. Its momentum and position are quite easy to
measure simultaneously.
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Motivation for nanoscale thermal and electrical
measurements

» Applications in ultrahigh density ( > 1Tb/in?) magnetic data
storage.

» Thermal management in silicon processors which will soon have
interconnects with sub 50 nm line widths.

» Interesting science in thermal heat transport at the nanoscale
particularly in electron-phonon interactions, photon-vibrational
interactions, etc.
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How much information

Some figures
» New Information Stored in 2002 = 5 Exabytes = 5x1018 bytes
(growing 30% per year).

» The Stanford linear accelerator is the world’s largest single
database at 500 TB.

» Magnetic (92%), Film, Paper, Optical.

Citation
Source:
http://sims.berkeley.edu/research/projects/how-much-info-2003.
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The superparamagnetic limit

As bits shrink, amount of magnetic energy stored reduces, and the bits
can be flipped due to ambient thermal energy. This is the
superparamagnetic limit.
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Trends in the magnetic storage industry

» Longitudinal recording: Bits in the plane of the film. Maxed out at
~100 Gbit/in?.

» Perpendicular recording: Bits perpendicular to the plane of the
film. More magnetic energy stored per bit. Expected to max out at
400 Gbit/in?.
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Heat assisted magnetic recording

» Variant of perpendicular recording.
» Uses magnetic materials with high coercivity.
» Requires localized heating for recording.

» Expected to reach 1 Thit/in? and beyond. The bit pitch
for 1 Thit/in? is 25 nm.
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Heat assisted magnetic recording (HAMR)

Perpendicular vs. HAMR Recording

i
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Figure: A comparison of system topologies of perpendicular magnetic

recording and heat assisted magnetic recording. Acknowledgement: Mark
Kryder, Seagate.
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Roadmap
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Figure: Perpendicular recording should work till 400 Gbit/in?>. HAMR is at
least 5 years away and still has many unsolved issues. Acknowledgement:
Barry Schechtman, Insic.
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1 Thit/in? is a LOT of information!
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Figure: With 1 Thit/in?> you can store _ _ _
the picture of every man, woman, and  Figure: 750 bytes, 30x30 pixel, 8 bit

child on earth on a disc the size ofa ~ grayscale, jpeg compression.
compact disk. Acknowledgement: Tim Rausch,

Seagate.
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Part I: Nanoscale temperature measurement
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Delivering heat locally

» An AFM cantilever may be
used to heat locally by raising
its temperature using a laser
beam.

» Demonstrated by

Wickramasinghe and
co-workers at IBM.

» We sought out to measure the

temperature _Of the AFM Figure: HAMR using a heated AFM
cantilever using Raman cantilever.
methods.
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Raman measurements
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Figure: Raman setup for measuring temperature of a heated AFM cantilever.
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Governing equations

_nas P kT

where h and k are the Planck and Boltzmann constants and ns and nag
are the Stokes and anti-Stokes intensities respectively.

h AE

k ns (Eo + AE)3
09 o oe e e )

T =

Eo and AE are the laser energy and the energy of the Raman shift,
and o is a correction factor that accounts for the difference in the
temperature dependence of the Raman cross-sections and optical
absorptions at the anti-Stokes and Stokes wavelengths, equalling
approximately 0.87.
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Experimental Results
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Figure: The silicon cantilever tip anti-Stokes/Stokes ratio and derived
temperature measured by the Raman scattering system for two
configurations: (a) pumping and probing the tip using a 532 nm laser (l) and
(b) pumping the back of the cantilever with a 787 nm laser and probing the tip
with a 532 nm laser (O). The solid line is a fit to the experimental data while
the dotted line is the temperature rise for a bulk silicon sample under the
same heating conditions. The inset shows a typical Raman spectrum
obtained with our experimental setup.
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Experimental Results
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Figure: The peak position of the Stokes (and anti-Stokes) energy as a
function of temperature, T, for a bulk silicon sample (dashed line) and as
measured on the silicon tip, corresponding to the measurements of the
previous figure.
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Thermal interface in HAMR media

Overcoat and

High anisotropy lube layers

media
Recording layer

Interlayer
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heat sink —

Figure: Special high temperature lubes have been developed to combat high
temperatures. The heat sink layer is introduced to take away the heat more
efficiently. Interface effects are seen between the overcoat/lube, mag layer
and heat sink layer since spot size is 25 nm. Acknowledgement: R.

Rottmayer, Seagate.
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Thermal microscopy using bimetallic cantilevers

Photodiode
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Thermal circuit x-AFM elements

b) » Si-Pt bimetallic cantilever

» An extra heating (HeNe)laser

» Exploits the differences in the bending
profile of cantilever bent due to bimetallic
deformation, and a cantilever which is

bent purely by a force setpoint

Thermal
ground

Figure: a) Bimetallic cantilever and coupled heating
laser for thermal microscopy b) Corresponding
thermal circuit, R, R, and Rg, are the cantilever,
tip, and sample thermal resistances.
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AFM: Basic concepts

A Split detector
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Figure: Basic illustration of a AFM using optical read-out
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How it works
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/ Laser
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Figure: Principles of operation of UoA Scanning thermal microscope

Note
Two scans are done, one with a cold followed by a hot cantilever

Ranjan Grover (Univ. of Arizona) Material properties using SPM

Slide

21/49



Imaging a grating with Si and SiO,
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Figure: Si - dark features and SiO, light features
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Checking for convective cooling
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Figure: Etched version of previous sample, now with a much lower step height
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Imaging a grating with only SiO, features
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Figure: SiO, on both light and dark regions
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Optimizing the thermal circuit using nitride cantilevers

Description

» V-shaped cantilever, 200 ym in length,
35 pm width of each arm, 1 um thick,
made of SizNg4

» Tip heightis 10 ym, made of Si

» Si3N,4 has a thermal conductivity which is
5X lower than Si. Thus the topographic
distortion seen from this cantilever-tip
system will be 5X larger

Figure: V-shaped silicon nitride cantilever with a
silicon tip at the end
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Summary and Conclusions, Part |

» A new instrument is developed and shows contrast between
features of different thermal conductivity.

» The system can be analyzed with a simple analytical model.

» The sample is heated locally, the exact local power absorbed is
known and thus, local thermal conductivity values can be
extracted.

» The spatial resolution for the thermal resolution is limited to 100
nm because of interface effects.
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Part II: Electrical probe storage on phase-change media
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The IBM Millipede

Figure: The IBM Millipede. 1024 cantilevers working in parallel. Data is
stored by creating pits on a polymer media using a heated AFM tip.
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Storing data bits using conductance switching
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Figure: Storing data bits as crystalline and amorphous regions. Gidon et. al
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System overview

» Data storage is done by changing the phase of phase change
media.

» The crystalline phase, and the amorphous phase vary in resistivity
by 3 orders of magnitude.

» System uses a large array of conducting probes to increase
throughput.
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Media
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Figure: Proposed media thin-film stack.
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Challenges

» Establishing ohmic contact reproducibly with an AFM tip.
» Tip loses conductivity due to frictional and current-induced
damage.

» Modeling the system is a challenge because of point contact
effects and ballistic electron transport through nanoconstrictions.
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The capping layer

» Phase change media oxidizes on exposure to the ambient.

» Amorphous carbon media has been proposed to act as overcoat
media.

» There is a need to control overcoat conductivity to maximize
contrast.

» Overcoat needs to be thin (sub 10 nm) and conducting.
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IV curves on diamond like carbon (DLC) sample
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Figure: IV curves on Nanochip media sample: Metal electrode + DLC
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Establishing contact with pulses
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Figure: Triangular and square pulses on Nanochip media sample: Metal
electrode + DLC
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Post IV curve imaging
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Figure: A 500 nm square is scanned with a high field to break down the local
dielectric impurity and then a larger area around it is scanned to see the
effect on the topographical and electrical maps. The square is where ohmic
contact is established and outside it, we have FN tunneling.
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Summary and Conclusion, Part Il

» Surface contaminants inhibit ohmic contact at a low applied field.

» Ohmic contact can be established at high fields which breaks
down the dielectric contamination.

» Tip damage over a period of time is a very real problem. Most of
the damage is frictional for lower current densities.

» Due to ballistic electronic transport through nanoconstrictions, role
of each layer in the thin film stack is hard to determine. Thus
modeling becomes difficult.
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Part Ill: Measuring workfunction using Kelvin probe force
microscopy
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The need for effective chemical sensing

Applications

» Defense applications.
» Quality control in labs and manufacturing environment.

Requirements of future chemical sensors

» Need to better sub-ppb sensitivity.
» Goal to have chemical sensors on a chip.
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Chemical sensing using ChemFETSs

Zn-Porphyrin self-

assembled monolayer % o\g‘
° 2
- D
. Pyridine
b gV molecule

P
Gate Oxide o
—\& _
Exposed Gate
r p 1

Figure: Open gate MOSFET with a chemically sensitive monolayer. On reaction, the workfunction
shifts which leads to a change in the the gate workfunction, and the output IV characteristics of
the transistor.

Characterizing the monolayer

Measurement of the spatial and temporal response of the monolayer on exposure to gas
is an important area of research to make this device viable.
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Contact potential difference

Vepp = ¢1 — ¢2

where ¢; is the workfunction of the material i
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Kelvin probe
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Figure: A Kelvin probe can determine
workfunction change.
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Kelvin probe force microscopy

Conducting AFM tip vibrating
due to electrostatic forces between
tip and sample
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Figure: A Kelvin probe force
microscope can determine local
workfunction change with near atomic
resolution.
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Experimental Results
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Figure: Temporal evolution of CPD versus time for FBP and ZnP on exposure
to pyridine gas. %ZnP exposed to pyridine for ~16 minutes. ¥ZnP exposed
to pyridine for ~11 minutes.lZnP exposed to pyridine for ~9 minutes. OFBP
exposed to pyridine for ~12 minutes. It may be noted here that the FBP data
is offset by 0.62 V for clarity.
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Results continued

Table: Experimental results performed with a Kelvin Probe Force Microscope
(KPFM) and a Kelvin Probe (KP) on self-assembled monolayers of free-base
porphyrin (FBP) and Zn-porphyrin(ZnP) before and after exposure to a
pyridine gas. Note that the CPD measurements for the exposed samples are
done one hour after exposure to pyridine and that the CPD values have
reached a steady state. The results summarized here are consistent with
those seen in Fig. 27

Sample CPD(V) KPEM  CPD(V) KP6500

FBP -0.303 + 2.5% -0.31 + 2.1%
FBP+Pyridine  -0.31 + 3.1% -0.30 + 4.1%
CPD Shift -0.097 0.1
ZnP 0.348 + 4.3% 0.31 + 2.35%
ZnP+Pyridine  0.557 + 3.2% 052+ 3.2%
CPD shift 0.209 0.21
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Summary and Conclusions, Part IlI

» A Kelvin probe force microscope instrument was developed.

» The utility of the system in temporal and spatial evolution of CPD
is demonstrated.

» The utility of this instrument is in evaluating the response of
specific chemically sensitive monolayers on exposure to gas in
real-time.
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The evolution of the AFM

The AFM has rapily evolved from a lab
analysis instrument to the enabling technology
for next generation instrumentation. Its uses
are limited only by our imagination.

Figure: Optical data
storage is one
commercial aspect of
optical microscopy.
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