
Accelerator Division 
Alternating Gradient Synchrotron Department 

BROOKHAVEN NATIONAL LABORATORY 
Associated Universities, Inc. 

Upton, New York 11973 

Accelerator Division 
Technical Note 

AGS/AD/Tech. Note No. 324 

SIMPLE APPROXIMATION FOR SYNCHROTRON FREQUENCY 

J.M. Kats 

August 2, 1989 

Abstract 

The synchrotron frequency distribution for particles within the 
stationary bucket can be approximated with good accuracy by the 
formula 

where 0 
the particle amplitude angle. 

is the usual synchrotron frequency for small amplitude, $o is 
0 

1.  Linear-Parametric Approximation 

Within a stationary bucket in longitudinal phase space, each 
particle exercises a synchrotron oscillation with its own constant 
synchrotron frequency, which is higher toward the bucket center and 
lower for particles close to the separatrix. I will apply a term 
central (synchrotron) frequency for the particles of infinitesimal 
amplitude. That is what is usually called synchrotron frequency, 
because it comes from the equation 

approximating synchrotron oscillations of particles with such a small 
angular amplitude Q << 1, that satisfy 
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For arbitrary 4, however, the approximate equation (1) is replaced by 
an exact one 

whose solution 9 = $(t) should satisfy the initial conditions* 

An approximation (2) is a part of a simple class of linear-para- 
metric functions defined by 

(5)  2 Sin $ = $P (9,) 

and applicable to the problem ( 3 ) ,  ( 4 ) .  

After the substitution of (5) to ( 3 ) ,  the approximate synchrotron 
frequency 

Qp($o) = W,P(9,> (6 )  

should be compared with the exact one 52 = 

can be found by the use of an elliptic integral’ or by tracking the 
particle motion numerically. I did the tracking. In the next section, 
we will compare several approximating functions p ( 9  ). 

= UoF(+o).  The latter 

I 0 

2. Comparison of Approximating Functions 

Figures 1 to 4 show the computed results for four approximating 
functions defined as follows: 

2 
P2($,) = 1 - - 3! ’ ( 7 )  

. 
*Any other ($(O) f 0) initial conditions can be reduced to (3 )  by the 
appropriate shifting of the time reference frame: t -f t + to. 
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2 A 

Sin $o 2 
Ps(Qo) = 

$0 
9 

$ 2  
P R  2 = 1 - ( + )  . 

All of the above originated from linear-parametric representation ( . 
Let us now turn to the figures showing approximations and their 

Two of them are F($o) (exact errors. Each figure has three curves. 
distribution) and pa($,) (approximate distribution (a = 2,  3 ,  s, R )  

both starting at $o = 0, F(0) = pa(0) = 1. 
curves is shaded. 
is relative error: 

The space between those two 
The third curve E($o), starting at $o = 0, E ( 0 )  = 0 

The worst approximation is the first which comes from obvious Taylor 
expansion up to the second term. Because this approximation is valid 
only for the short interval of argument $o ,  Figure 1 is not completed 
for $ close to R. 

0 

Figure 2 represents the approximation coming from the Taylor 
expansion up to the third term. 
very dramatic for the price of increased complexity in p3. 

The improvement in accuracy is not 

Figure 3 shows that trying to avoid Taylor expansion does not pay 
in accuracy. 
lower boundary estimation 

Maybe the only profit from this approximation is the 



Figure 4 shows unexpectedly that a small cor- 
rection in the second order Taylor expansion pays 
off very well: the relative error is less than 
5% for at least 80% of the argument region. 

It is interesting to compare the exact distri- 
bution F(4,) with its own expansion’ up to the second 
term: 

The comparison of F and pE is shown in Figure 5. 
One can see PE is good only for 60% of the region. 

So, we choose as an approximate synchrotron 
frequency distribution 

Try it--you’ll like it! 
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