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Following is a revision of AGS/AD/Tech. Note No. 321 (May 30, 
1989). Pages 1-19 remain the same, but pages 20-28 have been 
modified to accommodate a change in the names of the magnetic 
elements in the Booster. The Booster quadrupoles in each super- 
period are now labeled QVXl, QHX2, QVX3, QHX4, QVXS, QHXG, QVX7, 
and QHX8, where QH and QV denote horizontal and vertical focus- 
ing quadrupoles and X refers to superperiod A, B, C, D, E, or 
F. In each superperiod, the quadrupole QVXl is upstream of 
dipole DHXl and downstream of sextupole SVX1. The lattice runs 
from the center of QVXl to the center of QVX'1, where (XX') = 
(AB), (BC) , (CD) , (DE), (EF) , and (FA). The positions sl, s2, 
s3, ..., s8 referred to in this revised Technical Note are the 
centers of quadrupoles QVAl, QHA2, QVA3, ..., QHA8. 
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1 Abstract 

Following is the development of some formulae useful in determining the 
effectiveness of various configurations of correction elements used to 
eliminate components of imperfections which can excite certain transverse 
resonances. Specifically, formulae for the correction of the 2Qx = p ,  
2Qy = p ,  3Qx = p ,  Qx t 2Qy = p ,  3Qy = p ,  2Qz f Qy = p ,  resonances are 
developed and applied to the AGS and to the Booster. 

2 Excitation Coefficients 

In the papers of G. Guignard [1,2,3] on the theory of sum and difference 
resonances, it is shown that if the tunes are near a particular resonance 
then this resonance will be excited whenever the excitation coefficient, a, is 
nonzero. 

2.1 Resonances 2Qx = p and 2Qy = p 

For the 2Q, = p and 2Qy = p resonances the excitation coefficients are 
respectively 
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where, 2nr is the circumference bf the Equilibrium Orbit (E.O.), s = T O  is 
the distance along the E.O. measured from a fixed reference point, 

e aBy 
k ( 5 )  = cp (a,> 

is proportional to the quadrupole strength on the E.O. (E = 0, y = 0) and 
inversely proportional to the momentum, P, 

$0 = 2 ~ x  f (P - 2Qn)O, $y = 2 ~ y  f (P - 2Qy)O, (3) 

are the betatron phase advances, 

1 c=-- 
8nr (5) 

and Qo and Qy are the unperturbed horizontal and vertical tunes. These 
resonances can produce unlimited growth in the amplitudes of the 
betatron oscillations whenever the tunes me such that 

where, 

is the stopband width. 
w = 4r lKx,yl (7) 

2.2 Resonances 3Qz = p and Qx + 2Qy = p 

For the 3Qx = p and Qz f 2Qy = p resonances the excitation coefficients 
are respectively 

where. 

is proportional to the sextupole strength on the E.O., 

$x = 3 ~ x  + (P - 3Qx)8,  $xy = ~x + 2py + (P - Qx - 2Qy)QY (IO) 
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The stopband widths for these resonances are 

where E,, ey are the initial emittances. 

2.3 Resonances 3Qy = p and 2Q, + Qy = p 

The excitation coefficients and stopband widths for the 3Qy = p and 
2Q, + Qy = p resonances may be obtained from equations (8), ( lo) ,  and 
(12-13) by interchanging c and y and replacing k ( s )  with 

which is proportional to the skew sextupole strength on the E.O. 

2.4 Comments 

Careful inspection of the equations for the excitation coefficients, R ,  shows 
that each IG is essentially proportional to the pth harmonic in the 
azimuthal variation of k(5) around the machine. The real and imaginary 
parts of R are then the cos and s i n  components of this harmonic. The 
resonances discussed in sections 2.1-2.3 are therefore excited by the pth 
harmonic in the azimuthal variations of the quadrupole, sextupole, and 
skew sextupole fields around the machine. 

Gaussian units (cm, gram, second, erg, gauss, statcoulomb) are employed 
in the equations for k ( s )  given in sections 2.1-2.3. Thus if the momentum, 
P ,  is expressed in eV/c then c P / e  = 3335.641 gauss-cm per MeV, or 
c P / e  = 3.335641 tesla-m per GeV. 

3 



3 Correction Schemes 

Any naturally occuring fields in the machine, or fields due to 
imperfections, which produce nonzero values of the excitation coefficients , 
IG, can excite resonances resulting in beam loss. We call each K, produced 
by these fields an intrinsic excitation coefficient of the machine and denote 
it by KO. To cancel each K O ,  so that the resonances can not be excited, 
correction elements located'at various positions, s j ,  in the ring are excited 
with currents, I j ,  in such a way that they produce a IG equal to - K O .  When 
this is done we say that the resonances have been corrected. 

3.1 Correction of resonances 2Qx = p and 2Q, = p 

Suppose there are N identical correction quadrupoles located at positions, 
5 j ,  and excited with currents I j .  If the integrated strength of each 
quadrupole is Q gauss/amp, then the set of quadrupoles will produce 
excitation coefficients 

in which 
P x j  = P x (  5j)7 

%=(si)  f (P - 2 Q = ) @ j ,  

P y j  = P y ( 5 j ) 7  

+ y j  = W y ( 5 j )  f (P - 2 Q y ) e j ,  $ x j  

and equations (1-4) have been employed in the thin lens approximation. 
Generally it is necessary to correct both resonances simultaneously since 
some particles in the beam may be near the 2Qx = p resonance while 
others are near the 2Qy = p resonance. This is especially true near 
injection where the beam is spread over a large region of tune space due to 
space charge detuning. In general, then, the positions, 5 j 7  of the 
quadrupoles must be chosen so that it is always possible to find a set of 
currents, I j ,  which produce the values of I G ~  and I G ~  required to correct both 
resonances at the same time. Since each IG has a real and an imaginary 
part, we see from equations (15) that four correction elements are needed. 

3.1.1 Correction of one resonance only 

Before considering the general case let us consider the special case in which 
it is necessary to correct only one of the resonances, say 2Qx = p .  Then 
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only two correction elements are needed, ,and taking N = 2 the first of 
equations (15) becomes 

where C X  and S X  are respectively the cos (real) and sin (imaginary) 
parts of K ~ ,  Cj = coS($aj), and Sj = sin(&). Solving for I1 and I2 we 

where S1z = C1SZ - SlCz = sin($,z - $xl). Here we see that the amount 
of current required to produce a given f i x  is proportional to l/SlZ which 
becomes infinite whenever the phase difference, $x2 - is an integral 
multiple of x .  If we define 

4 x j  = 4x( s j )  = ~ = ( s j ) / Q x ,  4 y j  = 4 y ( s j )  = ~ y ( s j ) / Q y  (18) 

then near the 2Qx = p resonance the phase difference 

$22 - $01 = P 4 X ( S 2 )  - P 4 X ( S l )  = P ( 4 x 2  - 4x1). 

Thus the effectiveness of the currents, I1 and I , ,  in producing the desired 
corrections is proportional to IS121 = Isin(pq5,z - p$xl)( and we see that 
one must avoid positions for which p(&2 - is an integral multiple of 
T .  The optimum positions-i.e. those for which the least amount of 
current is required to produce the desired corrections-are those for which 
~ ( 4 ~ 2  - 4x1) is an odd multiple of n/2, and Pel and P x 2  are beta 
maximums. 

3.1.2 Correction of both resonances simultaneously 

Let us now return to the general problem of correcting both resonances 
simultaneously. In this case four correction elements are needed, and with 
N = 4 equations (15) become 

(E] =c(f$)&4[ 4 5) 
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where, 

C X  and S X  are the cos and sin parts of fix, CY and SY are the cos and 
sin parts of K ~ ,  Cnj = Cos($xj), Sxj = sin(+,j), Cyj =  COS(+^^), and 
Syj = sin(4yj). The currents which produce the desired corrections are 
then cx [ ; ) = $ ( $ ) M - l [  :;). SY (21) 

Here we see that the effectiveness of the correctors in producing the 
desired corrections depends on the inverse of the matrix M which is, in 
general, rather complicated. However, if one makes some assumptions 
about the machine lattice and the placement of the correctors, then both 
M and its inverse become much simpler. The determination of the 
effectiveness of the correctors then becomes rather straight forward. The 
conditions under which the following simplifing assumptions are valid will 
be discussed in section 3.4. 
In the previous section we found that the 2Qx = p resonance is most 
effectively corrected when the two correction elements are located at 
horizontal beta maximums. Thus, if we wish also to correct the 2QY = p 
resonance, two correction elements should be placed at vertical beta 
maximums. We therefore take positions s1 and 9 2  to be vertical beta 
maximums and positions s3 and 54 to be horizontal beta maximums. We 
shall also take s1 = 0 and assume that 

where $x(sj) and $y(sj) are the normalized betatron phase advances 
defined in equations (18). Then near the resonances we have 

and therefore 
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We shall also assume that 

P y l  = P y a  = B ,  Py3 = Py4 = b, 
where (a ,  b) and ( A ,  B )  are respectively values of beta minima and beta 
maxima in the machine lattice. With these assumptions the matrix, M, 
becomes 

u C ~  u C ~  A C 3  A C 4  

M =  ( -BC1 "1 -BC2 -bC3 -bC4 " 4 ) .  (22) 

-BS1 -BS2 -bS3 -bS4 

we then have 

where 

M = (  - B m  am -bn  A n ) = (  -B a -b " ) (  :), (23) 

SIZ  = CISZ - ~ C Z  = sin(p42 - P ~ I ) ,  

S34 = C 3 S 4  - S 3 C 4  = sin(pq54 - p 4 3 ) .  

Putting (24) into (21) we obtain 

-9 ( -:: -: ) ( bCX+ ) (25) (:)= (AB  - ab)Slz bSX + ASY ' 

9 ( 5'4 -2 ) ( BCX + c C Y  ) (:)= (AB - ab)S34 -5'3 B S X  + aSY 
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where 

Here we see that the effectiveness of currents IT and I2 in producing the 
desired corrections is proportional to IS121 = Isin(p42 - p 4 l ) l .  Likewise the 
effectiveness of currents I3 and I4 is proportional to 
IS341 = 
p(42  - 41) or p(44  - 4 3 )  is an integral multiple of n must be avoided. The 
optimum positions are those for which ~ ( $ 2  - $1) and ~ ( $ 1 -  4 3 )  are odd 
multiples of n/2 .  We also see that the effectiveness of the currents is 
proportional to AB - ab, which is zero when AB = ab. This is consistent 
with our earlier assumption that two correction elements should be placed 
at horizontal beta maximums and two at vertical beta maximums. 

- p43)I.  Thus, corrector positions for which either 

3.2 Correction of resonances 3Qx = p and Qm + 2Qy = p 

As in section 3.1 we suppose that there are N identical correction 
elements-sextupoles in this case-located at positions, s j ,  and excited 
with currents I j .  If the integrated strength of each sextupole is S gauss/cm 
per amp, then the set of sextupoles will produce excitation coefficients 

in which 
P x j  = P z ( s j ) ,  D y j  = P y ( s j ) ,  

$ x j  = 3 p x ( ~ j )  + ( p  - 3Qz)e j ,  

$y j  = P z ( s j )  f 2 P y ( s j )  -I- (P - Q z  - 2 Q y ) e j ,  

and equations (8-11) have been employed in the thin lens approximation. 
As with the half-integer resonances it is generally necessary to correct the 
3Qx = p and Q0 f 2Qy = p resonances simultaneously. Since each K has a 
real and an imaginary part we see from equations ( 2 6 )  that four correction 
elements are needed. Taking N = 4 equations ( 2 6 )  become 

[;) =c($)&4( i ' )  I4 
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where 

M =  [ 
(28) 

CX and SX are the cos and sin parts of t cx ,  CY and SY are the cos and 
sin Parts of by /3 ,  Cxj = COS($xj), Sxj = sin($ ma a )  7 Cyj =  COS($^^), and 
S y j  = sin($yj). The currents which produce the desired corrections are 
then 

312 P d  (7x2 

We now make some assumptions, as before, which simplify the form of M 
and make the determination of the effectiveness of a given set of correction 
elements straight forward. The conditions under which these assumptions 
are valid will be discussed in section 3.4. As in section 3.1.2 we take 
positions s1 and s2 to be vertical beta maximums and positions s3 and s4 

to be horizontal beta maximums. We also take s1 = 0 and assume that 

where #,(sj) and 4y(sj) are the normalized betatron phase advances 
defined in equations (18). Then near the resonances we have 
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C 

where (a ,  b )  and ( A ,  B )  are respectively values of beta minima and beta 
maxima in the machine lattice. With these assumptions the matrix, M, 
becomes 

we then have 

and 

where 

$4 -c4 1 SI -Cz 1 
- 

,-l- ZG ( -s1 c1) ,-l= s,, ( -s3 c3 ) ’ 
Si2 = Cis2 - Sic2 = sin(p42 - p$l) ,  

5’34 = C3S4 - S3C4 = sin(p44 - ~ 4 ~ ) .  
Putting (32) into (29) we obtain 

(:)= bSX + ASY 

where 
1 CP 

g =  c (z) * 

10 



Here we see, as before, that the effectiveness of currents 11 and 1 2  in 
producing the desired corrections is proportional to 
IS121 = Isin(p42 - p&)1. Likewise the effectiveness of currents 13 and 14 is 
proportional to IS341 = Isin(p44 - ~ 4 ~ ) ( .  Corrector positions for which 
either ~ ( $ 2  - 41) or ~ ( $ 4  - 4 3 )  is an integral multiple of x must therefore 
be avoided. The optimum positions are those for which ~ ( $ 2  - 4 1 )  and 
~ ( $ 4  - 4 3 )  are odd multiples of n / 2 .  We also see that the effectiveness of 
the currents is proportional to AB - ab, which is zero when AB = ab. This 
is consistent with our assumption that two correction elements should be 
placed at horizontal beta maximums and two at vertical beta maximums. 

3.3 Correction of resonances 3Q, = p and 2Qx + Qy = p 

The formulae for the correction of the 3Qy = p and 2Qx + Qy = p 
resonances may be obtained from the formulae of section 3.2 by 
interchanging z and y and replacing the sextupole strength with the skew 
sextupole strength. 

3.4 Comments 

We have seen in sections 3.1 and 3.2 that by making some assumptions 
about the machine lattice and the placement of correction elements, the 
task of determining the effectiveness of a given set of correctors becomes 
rather straight forward. Here we discuss the conditions under which these 
assumptions are valid. 

Consider first the case in which the lattice is composed of N identical 
FODO cells, and let fiZ = px/Qa and $zI = py/Qy be the normalized 
betatron phase advances in the o and y planes between two horizontal beta 
maximums, two vertical beta minimums, or between a beta minimum and 
a beta maximum. Then in each case 4x = q&. Furthermore any two 
horizontal beta maximums (or minimums) in the lattice are equal, any two 
vertical beta maximums (or minimums) are equal, and the beta maximums 
in one plane occur at the same locations as the beta minimums in the 
opposite plane. Thus, if two correction elements are placed at horizontal 
beta maximums and two at vertical beta maximums, then all of the 
assumptions made in sections 3.1 and 3.2 are valid. 

Now in general not all of the FODO cells in an AGS lattice are identical. 
However there are usually symmetries which imply that the assumptions 
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made in sections 3.1 and 3.2 are valid for some set of points in the lattice. 
In each superperiod of the Brookhaven AGS, for example, we have 

P x ( s 5  - t )  = Px(8.5 + t )  = Py(815 - t )  = Py(s15 + t ) ,  (34) 

Py(85 - t )  = Py(s5 f t ,  = Px(s15  - t )  = px(s15  t t ) ,  
and 

$x(% t 8) - $x(815 - t )  = &(85 t t )  - $y(& - t ) ,  (35) 

4 x ( %  t t )  - $x(35 - t )  = 4g(815 -k t )  - &(a15 - t ) ,  

4x(815 - t )  - 4 z ( s 6  4 t )  = $y(s15 - t )  - 4 y ( s 5  d- t ) ,  
where s5 and 815 are respectively the distances from the beginning of a 
superperiod to the middle of the number 5 and number 15 straight 
sections, 0 < t < 85,  and 4x and 4y are the normalized betatron phase 
advances defined in equation (18). Adding equations (35) we have also 

Thus in each superperiod we have 

and 
4x19 - 4 x 1  = 4g19 - 4y17 $017 - 4 x 3  = 4y17 - 4y37 (38) 

4x15 - 4 x 5  = d y l 5  - 4y57 4x13 - 4 x 7  = 4y13 - 4y7,  

4x11 - 4 x 9  = 451x1 - 4y91 

where the numbers 1-19 correspond to straight sections 1-19. (Note that 
beta minima and maxima occur only in the odd numbered straight 
sections of the AGS). It is, of course, also true that pxl = px2, Py1 = Py2, 

and 4x2 - 4,1 = 4 y 2  - q5y1 for any two points, 1 and 2, separated by one or 
more superperiods in the AGS. 
The assumptions of sections 3.1 and 3.2 are therefore valid if two 
correction elements are placed in any one pair of the following pairs of 
straight sections: (1,19), (3,17), (5,15), (7,13), (9,11), and another two are 
placed in the same straight sections of another superperiod. 
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In addition to the relations (34-38), which are nearly exact, we have the 
following approximate relations due to the shortening of magnets 1, 2, 9, 
10, 11, 12, 19, and 20 in each superperiod [4]: 

Px5 F5 px9 F3 Pxl3r py5 Py9 F3 py13, (39) 

px7 Z3 poll px15, py7 pyll py15. 

It follows that the five FODO cells in each superperiod are approximately 
equivalent so that the results stated above for the case of a lattice 
composed of identical FODO cells are approximately true. Thus, if 
correctors are placed at any two horizontal beta maximums and at any two 
vertical beta maximums in the AGS, then the assumptions of sections 
3.1-3.2 are always at least approximately valid and one may use the 
formulae developed in these sections to estimate the effectiveness of the 
correctors. 

In the AGS Booster each of the six superperiods is composed of four 
FODO cells which are to first order identical. Therefore, if one places 
correctors at any two horizontal beta maximums and at any two vertical 
beta maximums in the booster lattice, the assumptions of sections 3.1-3.2 
are valid. 

4 Application to the AGS 

The correction schemes discussed in the following sections (4.1-4.3) were 
f is t  worked out by E. Raka [5,6]. We re-derive his results here using the 
formulae developed in section 3. 

4.1 Correction of resonances 2Qx = 17 and 2Qy = 17 

In Raka’s scheme for the correction of these resonances one first considers 
four correction quadrupoles located in the C3, F3, C17, and F17 straight 
sections. We shall take positions 51, 52 ,  53,  54 to be the locations of the 
quads in straight sections C3, F3, C17, and F17 respectively, with 51 = 0. 
Then using equations (34-36) and the superperiod symmetry we have 

Px1 = P3?2 = Py3 = py4 = b,  p y l  = py2 = Px3 = px4 = B ,  (40) 

and 
451 = (6X(C3) = (6y(C3) = 0, (62 = (6x(F3) = (6y(F3), (41) 
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43 = 4z(C17) = 4y(C17), 4 4  = 4z(F17) = 4y(F17). 
Now the normalized betatron phase advance between two points separated 
by three superperiods in the AGS is n/2, and the normalized phase 
advance between the number 3 and number 17 straight sections of a 
superperiod is very nearly 2n/17. Thus we have 

2n n- 2n 
17 ' 2 17 

n- 
41= 0, 4 2  = 5, 4 3  = - 44=-+-. 

Using (40-42) and p = 17 in the equations of section 3.1.2 we find that the 
excitation coefficients produced by the four correctors are 

where 
I O  1 0  

MT1 = 1 ( -; -:) ( ) ,  R =  B/b .  (45) 
b(R2 - 1) 

Now, to insure that the correction scheme does not introduce any 98 
harmonic components, additional quadrupoles at E3, H3, E17, H17 are 
excited with the same currents as the quads at C3, F3, C17, F17 
respectively. Since the additional quads are two superperiods away from 
the f i s t  set of quads, we have 

Pz,,(E3) = Pz,y(C3), Pz,,(H3) = Pz,y(F3),  

Pz,y(E17) = Pz,y(C17), Pz,y(H17) = Pz,g(F17), 
&(E31 = &(E31 = 41 t w ,  4@3) = 4@3) = 4 2  t w ,  

= 4y(E17) = $3 t w ,  4z(H17) = &(H17) = 4 4  t W ,  

where 41-44 are given by (42), and w = n / 3  is the normalized betatron 
phase advance for two superperiods. The excitation coefficients produced 
by the additional quads are therefore 
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where 

, (pw = 1 7 ~ / 3 ) .  (47) cos(pw) -s in(pw) 

The excitation coefficients produced by both sets of quadrupoles are given 
by the sum of equations (43) and (46). 

In addition to insuring that no 90 harmonic components are introduced by 
the correction scheme it is necessary to insure that no 08 components are 
introduced. (Any 08 components would alter the machine tunes). This is 
accomplished by adding a second group of eight quadrupoles to the 
scheme. These eight quads, at 13, L3,117, L17, K3, B3, K17, and B17, are 
excited with currents opposite to those in the first group at C3, F3, C17, 
F17, E3, H3, E17, and H17 respectively. Using the fact that the second 
group of quads are a normalized betatron phase advance of x away from 
the first group, the equations of section 3.1.2 with p = 17 show that the 
second group produces the same excitation coefficients as the first group. 
Thus the excitation coefficients produced by all 16 quads are 

where 

1 Sl-l 0 M-' = -MT1 ( 
2 Sl-l ) , 

n = I + ? 1 7 = i (  3 d 3  ) .'=2( 3 -4 3 ) .  
2 3 / 3 3 ,  12 d3 

Using (44-45) in (49) we then have 

3 f i  3R f i R  

-3R - f iR -3 -fi 7 (50) 

f i R  -3R d3 -3 

M =  2b ( Sl RSl ) = b  ( -fi 
-RJZ -Sl 
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* (51) 3 --a 
-3 -3R h R  

-4 -3 - d R  -3R 

&R 3R 3 

1 M-' = 

The currents which produce the desired corrections are then 

4.2 Correction of resonances 3Qx = 26 and Qx + 2Q, = 26 

In Raka's scheme [5,6] for the correction of these resonances one first 
considers four correction sextupoles located in the C7, E7, C13, and E13 
straight sections. We shall take positions 51, 8 2 ,  53, s4 to be the locations 
of the sextupoles in straight sections C7, E7, C13, and E13 respectively, 
with s1 = 0. Then using equations (34-36) and the superperiod symmetry 
we have 

Pxl  = px2 = Py3 = Py4 = b,  py2 = px3 = px4 = B ,  (53) 

and 
41 = 4X(C7) = 4,(C7) = 0, 4 2  = #,(E71 = #,(E7), 
4 3  = 4X(C13) = 4,(C13), 4 4  = 4x(E13) = 4,(E13). 

(54) 

Now the normalized betatron phase advance between two points separated 
by two superperiods in the AGS is ?r /3, and the normalized phase advance 
between the number 7 and number 13 straight sections of a superperiod is 
4 M 7r/20. Thus we have 

$1 = 0, 9 2  = n/3, $3 = $, $4 = 7r/3 t 4 (55) 

Using (53-55) and p = 26 in the equations of section 3.2 we find that the 
excitation coefficients produced by the four correctors are 
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where 

= 4c (g) M [ E )  , (E) I4 

C1 = 1, C2 = -112, C3 = COSW, C4 = COS(W f 2 ~ / 3 ) ,  
SI = 0, S, = &/2, S3 = sinww, S4 = sin(w f 271-/3), 

and w = 264 M 2671-120. 
Now, to insure that the correction scheme does not introduce any 00 
harmonic components-which would alter the machine 
chromaticities-additional sextupoles at F7, H7, F13, and H13 are excited 
with currents opposite to those at C7, E7, (313, and E13 respectively. 
Since the additional sextupoles are three superperiods away from the first 
set of sextupoles, the normalized betatron phase advance between the two 
sets is 71-12, and hence with p = 26 the equations of section 3.2 show that 
the additional set produces the same excitation coefficients as the first set. 
To insure that no odd harmonics in 8, and in particular no 98 or 178 
harmonics, are produced, a second group of eight sextupoles is added to 
the scheme. These eight sextupoles, at 17, K7,113, K13, L7, B7, L13, and 
B13 are excited with the same currents as those at C7, E7, (313, E13, F7, 
H7, F13, and H13 respectively. Using the fact that the second group of 
sextupoles is a normalized betatron phase advance of 71- away from the first 
group, the equations of section 3.2 with p = 26 show that the second group 
produces the same excitation coefficients as the first group. Thus the 
excitation coefficients produced by all 16 sextupoles are four times those 
produced by the original set of four, and are therefore 

(59) 
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where M is given by (57). The currents which produce the desired 
corrections are then 

cx 

where M-' is given by (58). 

4.3 Correction of resonances 3Qy = 26 and 2Qz + Qy = 26 

These resonances are currently corrected with four air-core skew sextupoles 
located in straight sections E15, F15,15, and K5. However, during the 
1989 summer shutdown the skew sextupole in E15 will be removed and it 
will no longer be possible to correct both resonances simultaneously. 
During the 1990 summer shutdown the remaining air-core skew sextupoles 
will be removed and four new iron-core units will be installed. A number 
of correction schemes using these new skew sextupoles have been 
considered, and based on constraints imposed by the straight section 
committee (Willem van Asselt) and the vacuum group (Kimo Welch) two 
sets of locations for the magnets are currently recognized as possibilities. 
One set of locations would consist of straight sections 7 and 13 in one 
superperiod and the same straight sections two superperiods away. The 
other set would consist of straight sections 1 and 19 in one superperiod 
and the same straight sections two superperiods away. In each case the two 
pairs of straight sections are separated by two superperiods so that 
additional magnets may be added, (if necessary) as in the scheme 
discussed in the previous section, to insure that no harmful harmonic 
components are produced. 

Here we consider the more general case in which skew sextupoles are 
placed in straight sections i and j of superperiod M and in the same 
straight sections of superperiod N, where (i, j )  is any one of the pairs (19, 
l), (3, 17), (15, 5), (7, 13), or (11, 9), and M and N are n superperiods 
apart. (Note that the first number of each pair corresponds to a vertical 
beta maximum and the second to a horizontal beta maximum). We shall 
take positions SI, s2, s3, and 94 to be the locations of the skew sextupoles 
in straight .sections Mi, Ni, Mj, and Nj respectively, with SI = 0. Then 
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using equations (34-36) and the superperiod symmetry we have 

P x 1  = P x 2  = By3 = Py4 = b7 Py1  = Pya = Po3 = Px4 = B ,  (61) 

and 
$1 = $,(Mi) = $y(Mi) = 0, 4 2  = &(xi) = 4y(xi)i 
A = 4 X ( W  = & ( W ) 7  4 4  = $ X ( W  = ddw. 

(62) 

Now the normalized betatron phase advance between two points separated 
by n superperiods in the AGS is nn/6,  and the normalized phase advance 
between the i and j straight sections of a superperiod is 4 M ( j  - i)n/120. 
Thus we have 

Using (61-63) and p = 26 in the equations of section 3.2 with z and y 
interchanged we h d  that the excitation coefficients produced by the four 
correctors are 

= c ($) M [ ;] [i) I4  

(64) 

where CY and SY are the cos and sin parts of tcy, C X  and S X  are the cos 
and sin parts of tcyZ/3, and 

R3J2S1 R3I2S2 S3 M = 6312 I -R1f2C1 -R1J2C2 -RC3 -RCq 

and 
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SI = 0, Sz = s i n ( n n / 3 ) ,  5’3 = s i n w ,  S, = sin(w -t- n7r/3), 

and w = 264 x 26(j - i)n/120. The currents which produce the desired 
corrections are then 

CY 

S X  

where M-l is given by (66). 

5 Application to the Booster 

The booster lattice [7] consists of six superperiods-labled A, B,  C, D, E, 
and F-each containing four FODO cells which are, to f is t  order, 
identical. The positions of the horizontal beta maximums in each 
superperiod are 52, 54, 56 ,  5 8 ,  and those of the vertical beta maximums are 
sl, s3, s5, s7, with s j  > s; if j > i. We shall take s1 in superperiod A to be 
the point of zero betatron phase. The normalized betatron phase advance 
(defined by equation 18) for each superperiod is n / 3 .  Assuming the four 
FODO cells in each superperiod are identical we have 

and 
P d  = P x 3  = Px5  = P x 7  = a, 

P y l  = Py3 = Py5 = P y 7  = B ,  

Ps2 = @e4 = Po6 = P x 8  = A,  

Pya = Py4 = Py6 = Py8 = b,  
where r$=i and $y; are the normalized betatron phase advances at the 
positions s;, and Po; = &(si), P,; = @,(si). To first order we also have 

(69) 

a =  b,  A =  B. ( 70) 

Although equations (68-70) are not exact-because the booster dipoles do 
not occupy the same positions in each FODO cell-they are good enough 

20 
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for estimating the currents required for various correction schemes in the 
booster and therefore will be used in the following sections. 

The correction elements for the schemes discussed in the following sections 
are located at or near the positions si in each superperiod and are excited 
with currents Iji where j = 1, 2, 3, 4, 5, and 6 corresponds to superperiods 
A, B, C, D, E, and F respectively. Tepikian has shown [8, 91 that by 
choosing 

one can correct the mQ, + nQY = p resonances without introducing 
unwanted harmonics. 

Iji fjIi, f j  = COS [p( j  - 1 ) ~ / 3 ] ,  (71) 

5.1 Correction of resonances 2Qz = 9 and 2QY = 9 

Using equation (68) we find that for p = 9 the phase differences, p 4 5  - p41 
and Pqh3 - p42 are odd multiples of 7r/2 which, as we have shown in section 
3, gives the most effective correction of the resonances. Thus, for the 
correction of the 2Qz = 9 and 2QY = 9 resonances we consider the four 
correction quadrupoles located in superperiod A at $1, s2, 9 5 ,  and 8 6 .  

Using (68-70) and p = 9 in the equations of section 3.1.2 we find that the 
excitation coefficients produced by the four correctors are 

where 

and 
{ S 5  - C 5  R S 5  - R C 5  ) 
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If we now excite the correctors at s7, s3, sg, and s4 with currents 17 = 11, 
Is = -Is, 1s = Iz, and 14 = -16 we find that the excitation coefficients 
produced by these quadrupoles are 

where 

The excitation coefficients produced by all eight quadrupoles in 
superperiod A are then 

where 

1 + cos(n/4) -sin(n/4) ) = f ( 2 + 
Now, in the scheme proposed by S. Tepikian [8] for the correction of the 
2Q0 = 9 and 2Qy = 9 resonances, the quadrupoles in the remaining 
superperiods are excited with currents given by (71). This insures that no 
106, 56, 48, or 06 harmonic components are produced by the scheme. The 
excitation coefficients produced by the quadrupoles in superperiod j are 

s in(x /4)  1 + cos(n/4) 

then 

where 
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and M1 is given by (78) and (73). Summing equation (79) over j we find 
that the excitation coefficients produced by the quadrupoles in all six 
sup erp er io ds are 

= C (2) M ( :) , 
1 6  

where, for p = 9, 
6 

M = fjMj = 6M1. 
j=1 

The currents which produce the desired corrections are then 

5.2 Correction of resonances 3Qs = 14 and Qs + 2Qy = 14 

Using equation (68) we find that for p = 14 the phase differences, 
p47 - ~ $ 1  and p48 - pqh are odd multiples of n/2 which, as we have shown 
in section 3.2, gives the most effective correction of the resonances. Thus 
for the correction of the 3Qs = 14 and Qs + 2Qy = 14 resonances we 
consider the four correction sextupoles located in superperiod A at 81, 82, 

87, and $8. Using (68-70) and p = 14 in the equations of section 3.2 we 
find that the excitation coefficients produced by the four correctors are 

where 
Cl C7 R3l2C2 R3l2Cg 
S1 S7 R3l2S2 R3I2S8 

-RS1 -RS7 -R1J2S2 -R1J2Sg 
-RC1 -RC7 -R1J2C2 -R1J2C8 

M a  = b3I2 
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If we now excite the correctors at s3, s5, s4, and 86 with currents 13 = -11, 
1 5  = -17, 14  = - 1 2 ,  and 16 = -1s we find that the excitation coefficients 
produced by these sextupoles are 

where 

R312S6 I . ( 8 6 )  312 I s3 S5 R3I2 S4 Mb = - b  -RC3 -RC5 -R112C4 -R1I2c6 
\ -RS3 -RS5 -R1I2S4 -R112Se 1 

The excitation coefficients produced by all eight sextupoles in superperiod 
A are then 

where 

Now, in the scheme proposed by S. Tepikian [9] for the correction of the 
3Q0 = p and Qo + 2Qv = p resonances, the sextupoles in the remaining 
superperiods are excited with currents given by (71). For p = 14 this 
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insures that no 136, 96, 56, or 08 harmonics are produced. (The scheme 
does produce 106 and 46 harmonic components which are potentially 
harmful. However, for the tune spreads and operating point expected in 
the booster this should not be a problem). The excitation coefficients 
produced by the sextupoles in superperiod j are then 

where 

and MI is given by (88). Summing equation (89) over j we fmd that the 
excitation coefficients produced by the sextupoles in all six superperiods 
are 

where, for p = 14, 
6 

M = fjMj = 3M1. 
j=1 

The currents which produce the desired corrections are then 

5.3 Correction of resonances 3Qz = 13 and Qz + 2Qy = 13 

For the correction of these resonances we again consider the four correction 
sextupoles located in superperiod A at SI, s2, s7, and SB. Using (68-70) 
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and p = 13 in the equations of section 3.2 we find that the excitation 
coefficients produced by the fow correctors are 

and 
R = B/b ,  Cj+l = cos(13nj/24), Sj+l = sin(13nj/24). 

(Note that for p = 13 the phase differences, p47 - ~ $ 1  and p48 - p 4 2 ,  are 
27r + 57r/4. The effectiveness of the correctors is proportional to the sin of 
this phase, as discussed in section 3.2). 
Now, as before, we excite the correctors at 53, s5, s4, and 56 with currents 
13 = -I1, I5 = -17,  I4 = -Iz, and I6 = -18. The excitation coefficients 
produced by these sextupoles are 

where 

The excitation coefficients produced by all eight sextupoles in superperiod 
A are then 
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* ‘  3 

where 

Cjf = COs(p4j + 7~/24),  

Cr 3 = COs(&j - 7~/24), 

Sjf = Sin(p4j + 7~/24),  

S3r = sin(p4j - 7~/24), 

(&j = 134j = 137~(j - 1)/24). 

Now, as before, we excite the sextupoles in the remaining superperiods 
with currents given by (71). For p = 13 this insures that no 148, 108, 98, 
40, or 08 harmonics are produced. (The scheme does produce 58 harmonic 
components which are potentially harmful. However, for the tune spreads 
and operating point expected in the booster this should not be a problem). 
The excitation coefficients produced by the sextupoles in superperiod j are 
then 

where 

and M1 is given by (97). Summing equation (98) over j we find that the 
excitation coefficients produced by the sextupoles in all six superperiods 
are 

where, for p = 13, 
6 

M = fjMj = 3M1. 
j=1 
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The currents which produce the desired corrections are then 
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